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Abstract

The heterogeneity in mechanical fields introduced by microstructure plays a critical role
in the localization of deformation. To resolve this incipient stage of failure, it is therefore
necessary to incorporate microstructure with sufficient resolution. On the other hand, com-
putational limitations make it infeasible to represent the microstructure in the entire domain
at the component scale. In this study, the authors demonstrate the use of concurrent multi-
scale modeling to incorporate explicit, finely resolved microstructure in a critical region while
resolving the smoother mechanical fields outside this region with a coarser discretization to
limit computational cost. The microstructural physics is modeled with a high-fidelity model
that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate
the behavior of a stainless steel alloy. The component-scale material behavior is treated with
a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plas-
ticity. The microstructural and component scale subdomains are modeled concurrently, with
coupling via the Schwarz alternating method, which solves boundary-value problems in each
subdomain separately and transfers solution information between subdomains via Dirichlet
boundary conditions.

Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic-
ity through modular designs, solution methodologies, model verification, and extensions to
Sierra/SM and manycore applications. Advances in conformal microstructures having both
hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property
case study in two-phase metallic composites applies the Materials Knowledge System to local
metrics for void evolution. Discussion includes lessons learned, future work, and a summary
of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way
coupling through a single degree of freedom.

4



Acknowledgment

We appreciate the patience and guidance of Jim Redmond, the project manager for this research.
Jim leads multiscale efforts within ASC and it is our hope that the work completed during this
LDRD will help provide the technical basis for multiscale modeling to impact our laboratory. The
writers gratefully acknowledge the many fruitful discussions in the development of this work with
Corbett Battaile, Irina Tezaur, Jakob Ostien, Fadi Abdeljawad, and Theron Rodgers.

5



6



Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.1 Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Concurrent multiscale: Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1 Microscale Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Concurrent multiscale modeling with the Schwarz Alternating Method . . . . . . . . . . 26

3 Concurrent multiscale: Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Progress in crystal plasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Viscoplasticity via multiple flow rules and hardening laws . . . . . . . . . . . . . . . . . . . . 34
4.2 Incorporating drag-based flow with nonlinear root-finding . . . . . . . . . . . . . . . . . . . . 35
4.3 Verification through quad-slip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Porting to the LAME material library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5 Extension to manycore architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Robustness suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Advances in conformal microstructures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1 Application to a hexahedral workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2 Moving to a tetrahedral workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6 Structure-property linkages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1 MKS framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Reduced order model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Discussion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1 Requisite components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2 A path forward through teaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Appendix
A Need for concurrent, two-way coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figures
1 A schematic illustrating concurrent coupling of the structural scale and the mi-

crostructural scale. Heterogeneous fields of plastic slip and hydrogen concentra-
tion at the microstructural scale transition to smooth fields at the structural scale.
As these field evolve, the stresses induced by the high-pressure gas attempt to drive
the crack forward. Substantial gradients exist at both scales. . . . . . . . . . . . . . . . . . . 13

2 Discovery of the dominant mechanisms that drive the performance of structures
stems from efforts in microscale physics, strong multiphysics coupling, concurrent
multiscale coupling, and a flexible research environment. . . . . . . . . . . . . . . . . . . . . 17

7



3 Microstructural domain, colored by grain ID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4 Inverse pole figure with respect to the loading direction for a particular microstruc-

tural realization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Load-displacement response of ten realizations of crystal orientations. . . . . . . . . . . 25
6 Reduced true stress-strain curves and the J2 fit of ten realizations of crystal orien-

tations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 Subdomains of tensile specimen. The domain is split into two grip subdomains,

each colored blue, and a microstructural subdomain at the center of the gauge
section, colored by grain number. The 50µm overlap regions can be seen at either
end of the microstructural subdomain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

8 Contour of F11–the normal component of the deformation gradient in the loading
direction. Localization is evident in the regions with red coloring. . . . . . . . . . . . . . . 29

9 (a) Reduction in cross-sectional area over time. Localization is evident in the vicin-
ity of −50µm, where the area is being preferentially reduced. (b) Rates of area
reduction as a function of time. The signature of localization is seen in locations
around −50µm, as in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

10 Cross-sectional area profiles for simulations employing symmetry, fixed, and Schwarz
boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

11 Stress-strain response of microstructural domain: (a) Normal, along tensile axis;
(b) Normal, perpendicular to tensile axis; (c) Shear in transverse plane. The solid
lines with closed symbols correspond to the average response of the entire mi-
crostructural domain. The dashed lines correspond to the grain-averaged quantities. 32

12 A modular approach to crystal plasticity having the desired crystal physics and
requisite numerics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

13 Comparing exponential hardening, saturation hardening, and Taylor hardening for
tantalum single crystals of multiple orientations. Models were fit with experimen-
tal data in the [100] orientation and then employed to predict the response in the
[110] and [111] orientations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

14 Residual profile for a single slip system using (a) the power-law flow rule, and (b)
the power-law with drag flow rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

15 The incremental solution path for the power-law with drag residual of a single slip
system using (a) Newton’s method, (b) trust region, and (c) back-tracking line search. 38

16 Comparison of (a) the elapsed model time for a given simulation step, and (b)
the total material model iterations per time step using Newton’s method with and
without drag, trust region, and back-tracking line search. . . . . . . . . . . . . . . . . . . . . . 39

17 Profile of a single component of the power-law with drag residual using random
combinations of slips for a 12 slip system material point. . . . . . . . . . . . . . . . . . . . . . 39

18 The Rubik’s cube block setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
19 The iterative solution and residual path for a representative material point in the

Rubik’s cube problem using (a) power-law flow rule and Newton’s method, and
(b) power-law with drag flow rule and Newton’s method. . . . . . . . . . . . . . . . . . . . . . 41

20 Constitutive response (solid line) for a strain rate of 100 s−1. Model equations are
(52) and (55), with parameters taken from Table 5. The dashed line is the saturated
flow stress S̄11 calculated from Equation (60). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8



21 Speedup for the OpenMP parallel implementation of the J2 and crystal plasticity
models using Kokkos. (a) 1000 instances of the J2 model. (b) 1,000,000 instances
of the J2 model. (c) 1000 instances of the crystal plasticity model. (d) 10,000
instances of the crystal plasticity model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

22 We developed a robustness suite to quantify and monitor the performance of our
algorithms for problems of increasing complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

23 Polycrystalline microstructure generated from kinetic Monte Carlo grain growth
simulations having 143 grains. (a) Full FEA mesh generated from 200×100×100
grid, (b) close-up of mesh, (c) view of three grains in FEA mesh. . . . . . . . . . . . . . . 53

24 Polycrystalline microstructure generated from phase field grain growth simulations
having 52 grains. (a) Phase field representation of the 3D grain microstructure. The
scalar field φ is used for visualization, where (red) blue denote (GBs) bulk grains.
(b) FE discretization of the microstructure and (c) view of three grains in FEA mesh 54

25 Electron backscatter diffraction (EBSD) measurement and FE discretization using
interface conformal hexahedral mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

26 Tetrahedral workflow for conformal boundaries that leverages Sculpt, Cubit, and
MeshGems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

27 Conformal grain boundaries reconstructed from a grain-growth simulation and dis-
cretized with higher-order tetrahedral elements subjected to substantial deforma-
tions. A far-field engineering strain of 0.45 was achieved in 225 time steps. The
volume-averaged axial stress and grain-boundary “ridges” highlight the grain-grain
interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

28 Illustrating the axial component of the total deformation gradient at and applied
engineering strain of∼0.6. The deformation localizes along grain boundaries with
local stretches are on the order of 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

29 Generalized MKS workflow for extracting structure-property linkage. . . . . . . . . . . 61
30 2-phase microstructure classes used in this study along with the relevant details of

how they were generated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
31 CDF of damage parameter (top 2%) and contour plots of the top 2% of Damage

parameter for Classes 6, 7, 8 and 9. Color scale bar is the same for all contour plots. 65
32 Top 2% of CDF of the original fit to GEVD (shaded area) and GEVD from pre-

dicted parameters (dashed lines) for all of the microstructures. . . . . . . . . . . . . . . . . 67
33 Schematic showing different levels of adaptive mesh refinement via recursive bi-

section. The resulting octree data structure provides increased accuracy to resolve
grain boundary curvature and triple junctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

34 Cases of substantial refinement that may stem from periodic boundary conditions
in the grain growth simulations. More study is needed to understand the relevance
of these features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

35 Components of a technical basis that enable research efforts, mature research en-
vironments, support production implementation, and ultimately serve our mission
and foster collaboration with national/international communities. . . . . . . . . . . . . . . 75

A.1 Thought experiment to investigate the ramifications of one-way and two-way cou-
pling. The figure is to scale with L = 5Lf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 In one-way transfer, the coarse scale and the fine scale are not in equilibrium,
Pc 6= Pf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9



A.3 Two-way coupling localizes the displacement field in the fine scale. We remark
that not only is one-way transfer inaccurate but the methodology is not conservative. 86

Tables
1 Parameter values for grain growth simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2 FCC slip systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Crystal plasticity parameters used in this study to model a representative stainless

steel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4 J2 plasticity parameters fit to the reduced crystal plasticity simulations. . . . . . . . . . 26
5 Crystal plasticity parameters employed for verification in uniaxial stress. . . . . . . . . 46

10



1 Introduction

In many applications of interest, the mechanical performance of metallic structures is driven by mi-
crostructure. Strongly coupled processes can localize grain deformations through heterogeneous
plasticity and void nucleation. Phenomenological models of these processes are insufficient to ob-
serve, analyze, and understand problems such as the hydrogen embrittlement of austenitic stainless
steels. The ability to make engineering design decisions depends critically on understanding and
quantifying the effects of the processes, and thus on resolving microstructure within the “struc-
tural” scale of an engineered component. The dominant dissipative mechanisms for candidate
face-centered cubic (FCC) metals result from intimately coupled processes evolving over many
grains (~µm) embedded within a structure (~m) subjected to complex loading in non-inert environ-
ments. In some cases, strong multiphysics coupling and concurrent multiscale models are required
to resolve failure processes. The simulation of failure may also require advanced material models
coupling the phenomenology of crystal plasticity with void nucleation (~nm) and growth.

Localization and the subsequent fracture/failure of engineering alloys intimately couples the
structural scale driving forces derived from the mechanical action applied to a body and the re-
sistance to fracture, which is governed by the metallurgical details of microstructure. Simply put,
the global loads are trying to tear apart a local microstructure that struggles to accommodate,
dissipate, and remain intact. The performance of the structure is quantified through global quan-
tities, while the variability of the microstructure is quantified through local quantities. The ability
to predictively connect local variability to global margins is the promise of multiscale modeling
for engineering applications. However, the application of multiscale models to study failure re-
mains a significant challenge. One cannot understand the impact of variability on localization
through volume-averaged quantities alone [4, 19, 64]. Hierarchical multiscale methods such as
first-order homogenization (volume averaging) are commonly employed in analyzing elastic and
elasto-plastic behavior, but this type of analysis cannot be used to capture the energy dissipation of
the structure that is due to local processes [12, 14]. There exist hierarchical methods to tie ensem-
bles of microstructure to structural scale models to estimate the impact of microstructure [26, 39].
However, these methods are prohibitively expensive at the structural scale, and furthermore, it is
not yet clear which features of polycrystal morphology are relevant, making it difficult to choose
an appropriate ensemble.

In determining the effective elastic properties of a polycrystalline aggregate, it is common prac-
tice to employ studies of representative volume elements (RVEs). This practice is predicated on the
success of such analyses that were demonstrated originally for the effective properties of compos-
ites assumed to have a periodic microstructure of a regularly-shaped second phase embedded in an
isotropic primary phase [31]. Application of this type of analysis to polycrystalline microstructures
is effective for elastic properties even where the assumption of periodicity is not strictly satisfied
[50]. Successful extension of this approach to modeling metal plasticity within the regime of
uniform elongation has also been demonstrated, for example in [38], but for analyzing necking be-
havior it is not clear that this approach is tenable. In fact, in this study it is shown that the influence
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of boundary conditions on the onset of necking is too strong to allow meaningful study of this phe-
nomenon with RVE-type analyses. On the other hand, concurrent multiscale modeling provides
the means to subject microstructure to the (boundary) conditions that would naturally arise in the
loading of a structure. In studying localization, concurrent models can focus computational power
in the vicinity of necking, while phenomenological constitutive models can be employed in regions
of lesser interest. While these reduced order models are insufficient to analyze the microstructural
influence on localization, it is hypothesized here that they are sufficient for transferring loads the
structural scale in the form of more realistic boundary conditions on the region of interest. These
models are significantly less expensive to compute than a physically-based microstructural model
such as a continuum crystal plasticity model, so that the additional computational cost of modeling
the entire structure can be afforded. The most straightforward incarnation of this type of model
avoids invoking any phenomenology in the hierarchical passage of information across scales and
instead couples the values of the primary solution variable between different parts of the simula-
tion domain. In the case of the present study, the focus is on mechanics and the balance of linear
momentum, so the displacement field is the coupled quantity. The coupling of the displacement
on interfaced [13, 25] or overlapping [51] subdomains enables the flow of information between
scales, while the internal state variables are maintained locally and do not require transfer. This
type of concurrent coupling can be accomplished through direct methods such as is used here,
where both scales are solved simultaneously, or methods which iterate between the microscale and
the structural scale.

A schematic of concurrent coupling is illustrated in Figure 1. Consider a pressure vessel with
a manufactured flaw that is exposed to high-pressure hydrogen gas. Microstructures are embedded
at the crack tip and loaded through concurrent coupling. Hydrogen transport [22, 81] is oper-
able at both scales and substantial gradients exist in both mechanics (plastic slip) and transport
(hydrogen concentration). In fact, the localization of the deformation may occur via deformation
bands, twins, and planar phase transformations [3, 52, 54, 75]. Although current approaches can
capture the heterogeneity in the solution fields due to a geometric discontinuity, we cannot cap-
ture microstructural heterogeneity without concurrent multiscale coupling. Our ability to predict
void nucleation as a function of microstructure, gas pressure, and time will characterize the per-
formance of the structure. Although current microstructural models do not admit stress-softening
and the loss of ellipticity [20], future efforts will capture void nucleation and regularized damage
evolution [37].

Given the challenges involved in spatial multiscale modeling, one wonders if joining the struc-
tural scale and the microstructural scale via refinement along a contiguously meshed interface is a
viable option. Although this is a natural leaning, there are major limitations:

1. There are limits to mesh refinement. The eigenvalues of the tangent stiffness scale with the
element size. Elements in resolved microstructures (~10 nm) may be 6 orders of magnitude
smaller than elements at the structural scale (~1 cm). This results in a highly ill-conditioned
numerical system that is difficult to solve. Iterative multiscale methods are not subject to
these constraints.
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2. The transition at the interface of the structural and microstructural subdomains is abrupt.
By contrast, classes of multiscale methods employ a domain overlap that may provide a
smoother transition between constitutive models.

3. For explicit transient dynamics, element sizes at the microstructural scale control the global
time step. If the coarse and fine scale are spatially separable, one can also partition the time
integrator. The structural scale can be explicit while the microstructural scale can be implicit.
Tractable and unconditionally stable time steps can be achieved at the microstructural scale.

Through ensembles of microstructures, we will be able to probe localization and subsequent fail-
ure processes to determine the performance of engineering structures. As a first step toward the
study of localization and void nucleation, the current work will only focus on the balance of linear
momentum and developing a framework for studying the effects of crystal anisotropy on localiza-
tion. This analysis focuses exclusively on the role of polycrystalline microstructure in developing
heterogeneous mechanical fields that will eventually result in strain localization.

1.1 Assertions

Before venturing into the body of the document, we believe it helpful to enumerate a few assertions
that motivated the original proposal. Major components are illustrated in Figure 2. We are moti-
vated to discover the dominant mechanisms that drive the performance of structures. We believe:

1. SNL applications invoke microstructure. This work was motivated through collaboration
with component groups which have design specifications for microstructure.

(a) Resolve microscale physics. We seek convergent spatial and temporal descriptions. We
believe that these processes can be achieved through refined meshes and implicit time
integration.

(b) Honor heterogeneous microstructures. Although voxelated descriptions may have util-
ity for far-field metrics, conformal grain boundaries are needed to resolve triple-junctions
and grain-grain misorientations. If we believe that voids nucleate from grain bound-
aries, we cannot convolute the singularities that stem from voxelation with strain local-
ization that may stem from the interaction of multiple grains along the load path.

2. Connecting scales provides a means for resolving behavior that may be difficult to decon-
volute with phenomenological models and experimental findings. Multiscale coupling can
also provide a stronger technical basis for quantifying performance metrics with increased
confidence.

(a) Homogenization requisite. Homogenization is extremely helpful in understanding coarser
level descriptions. In fact, we assert that although one is invoking additional physics at
the microscale, those physics are fundamental and can be employed to yield complex-
ities that may be difficult to describe and distinguish with phenomenology. For multi-
scale coupling in which different model descriptions are “connected” via an interface or
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domain overlap, the impedance mismatch can be mitigated with homogenization of the
fine scale. The limitation of first-order homogenization is the potential for bifurcation
of the representative volume element.

(b) Embedding a lower length scale with concurrent coupling. In cases dominated by local-
ized deformations, we seek to resolve the fine scale and connect that scale to the coarse
scale via concurrent coupling. Because the process of localization necessarily unloads
the coarse scale, two-way coupling is needed. In this mindset, all localization must be
resolved at the fine scale with appropriate methods for regularizing the boundary-value
problem. There is not concept of a representative volume element. One just resolves
localized regions with microstructure.

3. Flexible research environment. We assert that our development environment should both
permit and encourage rapid prototyping of models and methods. This is, in fact, the reason
why we invest in a development environment rather than implement methods in the produc-
tion codes. We attempt to strike a balance between reusability and utility without tremendous
complexity.

(a) Automatic differentiation. Automatic differentiation via Sacado provides infrastruc-
ture for the implicit solution of both the governing equations and the material model
update. We assert that tools like automatic differentiation (AD) are helpful in making
components modular to permit both the reduction and addition of microscale physics.

(b) Resolution through manycore/GPUs. This project initiated as Kokkos was being adopted
for Advanced Technology Deployment and Mitigation (ATDM). We also sought to
adopt Kokkos with the allure of a massive finite element simulation running on two
GPU cards in your own workstation. Although we still retain this vision, the complex-
ity of the venture has been sobering to our own efforts in the development environment.

4. Honor reality through multiphysics coupling. Experiments are inherently multiphysics. Ab-
normal environments may require thermomechanical coupling. Hydrogen embrittlement re-
quires chemomechanical coupling. We accept and assert that our most difficult problems
involving localization are frequently multiphysics problems. We should be prepared to solve
these classes of problems in both our development and production environments. In fact,
the only way to truly know if the problem is not multiphysics is to indeed solve both the
multiphysics and single physics problems and subsequently prove that the solutions yield
the same quantities of interest.

5. Enable property-structure linkages. When this project initiated, we sought to quantify the
performance metrics at the structural scale through ensembles of microstructure. After the
first year, Hojun Lim initiated a collaboration with Professor Kalidindi at Georgia Tech with
the hope of applying Material Knowledge Systems (MKS) to microstructure. The com-
plexities drove idealized representations but the notion of relating statistical descriptions of
geometry to statics descriptions of performance remained. We assert the value of this work
with a future focus on path-dependent processes.

6. Better to stay in the trenches until it works. We are not asserting that our team takes the moral
high ground with regard to implementation. We only seek to stress that developing truly
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robust methods reveals fundamental knowledge of the problem. We seek that fundamental
knowledge and are quite willing to reduce scope rather than retain scope to obtain a “story”
without understanding. This path necessarily involves a greater focus on verification, testing,
and achieving robustness.

Because this work stems from a Laboratory Directed Research and Development (LDRD)
project, the document is organized into sections that reflect our publications, interests, and collabo-
rations. Section 2 and Section 3 review both the methods and findings that stem from concurrently
coupling the microstructural scale to the structural scale [5]. In Section 4, we review the modu-
lar nature of our approach with a specific focus on solution methods, new architectures, and the
formulation of a robustness test suite. Section 5 seeks to provide the reader with a review of the
technologies we are applying to generate conformal microstructures. Findings for conformal grain
boundaries are also presented. Section 6 presents key findings from the collaboration with Pro-
fessor Kalidindi at Georgia Tech to develop property-structure linkages [69]. Section 7 attempts
to place the work in perspective with lessons learned and an outline for future work, funding, and
collaboration. Finally, we summarize our contributions in Section 8.
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strong multiphysics
coupling

concurrent multiscale
coupling

microscale
physics

flexible reseach
environment

solve all variables simultaneously
no splits for segregated solves
multiphysics preconditioners 

crystal plasticity for slip
discrete deformation twins
grain boundary nucleation

solving >1 billion dof
kokkos for manycore 

solve coarse/fine simultaneously
direct and iterative methods

homogenization n/a 

DISCOVERY

Figure 2. Discovery of the dominant mechanisms that drive
the performance of structures stems from efforts in microscale
physics, strong multiphysics coupling, concurrent multiscale cou-
pling, and a flexible research environment.
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2 Concurrent multiscale: Methods

This study seeks to develop and exercise a subset of the computational tools requisite for discovery
of conditions conducive to localization. The ultimate goal of this work is to use physically based
models to discover features in the phenomenology of localization during necking and correlate
those features with morphological characteristics of polycrystal microstructure. It is asserted that
an understanding of this process cannot be gained through the use of phenomenological models that
presuppose knowledge about the behavior to be studied. In an effort to generalize needs beyond
the current study, we propose several broad requirements of a simulation framework and models
that must be satisfied in order to pursue the discovery process. First, we assert that the applicability
of kinematics and constitutive behavior based on the assumption of infinitesimal deformations can
only be understood in the context of the more general finite deformation theory. Even where the
end goal is a homogenized model that employs assumptions of infinitesimal strain, it is understood
that local deformations are heterogeneous and may not admit this assumption. To that end, in this
study, a rigorous treatment of the microscale physics under finite deformations is implemented in
order to gain insight into the fundamental mechanics of localization and to determine the appro-
priate set of assumptions for reduced-order models.

Second, for the class of problems illustrated in Figure 1, multiphysics coupling may indeed be
requisite to understand the interplay between mechanisms of deformation and diffusion operating
at different spatial and temporal scales. Although we do not address multiphysics coupling in the
current work, we solve all the field variables simultaneously [78, 85] through “strong” coupling.
The methodology does not rely on problematic operator splits [8, 9] and the corresponding seg-
regated schemes. Third, if we accept that the importance of microscale physics and multiscale
coupling on the failure process, we must facilitate the two-way passage of information from the
microscale to the structural scale. In this work, we invoke the Schwarz alternating method [51, 76]
to tie the microscale to the structural scale through the primary fields. This avoids the invocation
of scale separation and first-order homogenization in the critical region of interest. Specifically,
this framework does not rely on the identification of metrics that can be “passed” from one scale to
another. Instead, the Schwarz alternating method is invoked for solving the same governing equa-
tions at two scales concurrently through alternating Dirichlet boundary conditions. We remark that
that the extension of the Schwarz alternating method to multiphysics is straightforward and will be
the subject of future research.

Lastly, on the computational side, the solution of these large, complex problems requires a
scalable, flexible environment to enable deployment of new physics and solution schemes. This
project leverages an open-source code base, Albany [74], for the development environment. Within
this general finite element partial differential equation (PDE) solution environment, the Laboratory
for Computational Mechanics (LCM) [80] houses the governing equations and constitutive mod-
els for finite deformation solid mechanics. This environment takes advantage of the Trilinos li-
brary [30, 66, 67] and the accompanying packages for elements (Intrepid), multiphysics (Phalanx),
automatic differentiation (Sacado), and solvers (NOX). In addition, the Kokkos package [21] is
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leveraged to provide manycore performance portability and execute the multiphysics, multiscale
framework on multicore central processing units (CPUs) and graphical processing units (GPUs).
Initial studies on the scalability of the crystal plasticity model for manycore performance under
Kokkos confirm that the current software functions as expected in a multithreaded mode, but those
findings are outside the scope of what is presented here.

This manuscript is partitioned into sections devoted to microscale physics and concurrent multi-
scale coupling with application to the study of localized plastic deformation of a stainless steel ten-
sile specimen. First, the microscale physics are fully resolved; microstructure is created by a phys-
ically driven grain growth model and the mechanical properties are analyzed with an anisotropic
crystal elasto-viscoplasticity model. Second, these microscale results are upscaled using homog-
enization to obtain parameter values for the far-field macroscale constitutive relations. Last, the
microscale and macroscale regions are coupled together and simulated in a concurrent multiscale
framework to study the transfer of load from the grips of a tensile specimen into the gauge section,
where deformation localizes during necking.

2.1 Microscale Physics

To fully resolve the potential mechanisms at play in the problem illustrated in Figure 1, it is nec-
essary to model ensembles of microstructures with discrete representations of grains. In that vein,
this work employs crystal plasticity (CP) [23, 42, 45] to model intragranular deformations for FCC
grains, while postponing the inclusion of the effects of grain boundaries to future work.

Computational microstructure

The polycrystal microstructure used in this study was created using the classical Monte Carlo Potts
grain growth model [33, 72] in the Stochastic Parallel PARticle Kinetic Simulator (SPPARKS) de-
veloped at Sandia National Laboratories. A more detailed description of the model can be found
in [33, 72], but a brief explanation is given here.

The Monte Carlo Potts model evolves spins (here, grain IDs) on a fixed spatial grid based on a
grain boundary energyE and a probability P of accepting a change in a neighboring grain ID. This
evolution represents the growth of existing grains through consumption of neighboring grains by
selectively reassigning the grain IDs of grid points adjacent to a grain boundary. The probability
of changing the grain ID at each grid point in a given time step is

P =

{
exp

(
−∆E
kBT

)
∆E > 0

1 ∆E ≤ 0
(1)

where ∆E is the change in energy associated with the potential grain ID change, kB is Boltzmann’s
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constant, and T is the simulation temperature. The values of the parameters used in this study are
given in Table 1. By biasing the probability of acceptance to promote lower energy states, the

Table 1. Parameter values for grain growth simulation.

N L kBT
128000 26 0.5

evolution is toward lower total energy from lowering the grain boundary content through grain
growth. The probability of acceptance is also governed in part by the simulation temperature,
which is used here as a parameter to control the curvature of the grain boundaries [86]. It is
assumed here that all grain boundaries introduce the same energy per unit surface area, so that
the total grain boundary energy in a microstructure is represented by the sum of the contributions
between neighboring lattice sites in different grains as

E =
1

2

N∑
i=1

L∑
j=1

[1− δ (qi, qj)] (2)

where N is the number of lattice sites in the simulation, L is the number of neighbors for each
lattice site, and qi is the grain ID of site i. From Equation (2), it can be seen that changing a grain
ID of a point to match the grain IDs of more of its neighbors lowers the energy contribution of that
point. As such, the trend is toward more neighboring grid points sharing the same grain ID (grains
growing).

To create the microstructure for this study, 2000 grain IDs are initially assigned to random
grid points within a 40 x 40 x 80 simulation cell, and the SPPARKS simulation is allowed to
run until a microstructure with 151 grains is produced. The physical scale of the microstructure
is set to 100µm x 100µm x 200µm. The average grain size (equivalent sphere diameter) is thus
approximately 12.7µm. The morphology shown in Figure 3 is used for all of the simulations used
in this study. An ensemble of microstructures is created by assigning a different uniform texture to
each realization within the ensemble. The inverse pole figure for the grain orientations in one such
realization are plotted in Figure 4 as an example.

Single crystal constitutive equations

The kinematics of the crystal elasto-plasticity model is based on a well-established continuum for-
mulation [23, 32, 40, 41, 68, 71] invoking a multiplicative decomposition of the total deformation
gradient F into elastic and plastic parts:

F = Fe · Fp (3)
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Figure 3. Microstructural domain, colored by grain ID.

[001] [011]

[̄111]

Figure 4. Inverse pole figure with respect to the loading direction
for a particular microstructural realization.
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Here, Fe and Fp are the elastic and plastic part of the total deformation gradient, respectively. The
elastic Lagrangian strain Ee is given in terms of Fe as

Ee =
1

2

(
FT
e · Fe − I

)
=

1

2
(Ce − I) (4)

where Ce is the elastic right Cauchy-Green deformation tensor. The elastic constitutive law relates
the second Piola-Kirchhoff stress in the intermediate configuration to the elastic Lagrangian strain
as

S = L : Ee (5)

where L is the elasticity tensor. Solving Equation (3) for Fe,

Fe = F · F−1
p (6)

it is seen that the stress S can be obtained for a given F, given a solution for Fp. The plastic con-
stitutive relations developed in the following section produce a set of equations to obtain Fp for a
given Fe, forming a coupled set of equations. The solution to these equations is a split of F into
Fe and Fp such that Equation (3) holds.

The velocity gradient L in the current configuration is written as:

L = Le + Lp = Ḟ · F−1 (7)

where, Le and Lp are elastic and plastic parts of the velocity gradient, respectively, and can be
represented as follows:

Le = Ḟe · F−1
e and Lp = Fe · L∗p · F−1

e . (8)

Here, the plastic part of the velocity gradient in the intermediate configuration is given by

L∗p = Ḟp · F−1
p . (9)

As the crystal deforms, the lattice is stretched and rotated according to Fe. Under the conventional
assumption that the plastic part of the deformation gradient does not cause lattice rotation, the
Schmid tensor Pα

0 in the reference and intermediate configurations coincide, and are given by

Pα
0 = sα0 ⊗ nα0 . (10)
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Table 2. FCC slip systems.

α Slip System α Slip System α Slip System α Slip System
1 (011̄)[111] 4 (01̄1̄)[1̄1̄1] 7 (011̄)[1̄1̄1̄] 10 (01̄1̄)[111̄]
2 (1̄01)[111] 5 (101)[1̄1̄1] 8 (1̄01)[1̄1̄1̄] 11 (101)[111̄]
3 (11̄0)[111] 6 (1̄10)[1̄1̄1] 9 (11̄0)[1̄1̄1̄] 12 (1̄10)[111̄]

Here, sα0 and nα0 are the initial unit vectors in the slip direction and the slip plane normal direction
on the α-th slip system, respectively. The twelve {111} 〈110〉 FCC slip systems used in the present
model are listed in Table 2. Assuming plastic deformation is caused by the dislocation slip, the
plastic part of the velocity gradient can be written in the intermediate configuration as [68]:

L∗p =
∑
α

γ̇αsα0 ⊗ nα0 =
∑
α

γ̇αPα
0 . (11)

It is implied that the summation in α accounts for all the slip systems. Combining Equations (9)
and (11), a governing equation for Fp is derived:

Ḟp = Fp · L∗p = Fp ·
(∑

α

γ̇αPα
0

)
(12)

It is noted that in this form, an Fp that is initially isochoric (det (Fp) = 1) will remain isochoric
throughout the deformation. To preserve this feature of Fp, the numerical integrator used in this
study employs the exponential map for the update.

The critical aspect of the single crystal constitutive equations in the crystal plasticity model is
the relation between the slip rate and the applied stress. One of the most widely used form for a
viscoplasticity model is the power-law function [36]:

γ̇α = γ̇α0

∣∣∣∣ταgα
∣∣∣∣1/m sgn(τα) (13)

Here, γ̇α0 is the reference shear rate and m is the rate sensitivity factor. sgn(τα) is the sign of the
shear stress on slip system α, which is always ±1. Assuming isochoric plasticity, the driving force
τα for slip on system α is

τα = det (Fe)σ : Pα = Ce · S : Pα
0 . (14)

In the case of precipitation hardening, the hardness values gα evolve according to the following
rule

ġα = ġ0

(
gs − gα
gs − g0

)∑
β

2
∣∣∣SαijSβij∣∣∣ ∣∣γ̇β∣∣ , (15)
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where ġ0 is a hardening rate parameter, g0 is the initial hardness, gs is the saturation hardness, and
S is the symmetric part of the Schmid tensor. The saturation hardness is given by

gs = gs0

∣∣∣∣ γ̇γ̇0

∣∣∣∣ω , (16)

where ω is a material parameter, gs0 is the initial saturation hardness, and γ̇ is the total slip rate
over all slip systems,

γ̇ =
∑
α

|γ̇α| . (17)

Note that setting ω to zero results in a fixed value for the saturation hardness, gs = gs0 . This
precipitation hardening law is well-suited to model strong self-hardening, such as results from the
Orowan looping mechanism.

The microscale physics is implemented in the open-source Albany multiphysics simulation
software. A fully implicit integration scheme is used to solve the governing equations for the
constitutive update. For each integration point, we solve a fully-coupled system of 24 equations
for both the slip γα and the hardening gα at step n+ 1.

Microscale simulations

In this study, the crystal plasticity parameter values given in Table 3 were chosen to reflect a
stainless steel alloy. The model was applied to simulate the behavior of the polycrystalline mi-
crostructure described in Section 2.1. Employing the microstructure illustrated in Figure 3, uniax-
ial stress simulations were conducted with symmetry boundary conditions applied to three planes
of the body. A constant displacement rate resulting in an engineering strain rate of 0.001s−1 was
applied along the long axis of the body. An engineering strain of 0.05 was achieved over ~200
time steps. The resulting mechanical behavior of the polycrystal is shown in Figure 5, where the
load-displacement responses of the ten orientation realizations are plotted.

Table 3. Crystal plasticity parameters used in this study to model
a representative stainless steel.

Elasticity Flow Hardening
C11 (GPa) C12 (GPa) C44 (GPa) m γ̇0 (s−1) ġ0 (MPa) gs0 (MPa) g0 (MPa) ω

204.6 137.7 126.2 0.05 1 2× 104 202 90 0.01

Macroscale model

The results of the microscale simulations referenced in the previous section were used to fit param-
eters for a standard J2 rate-independent plasticity model. While the crystal plasticity model used
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Figure 5. Load-displacement response of ten realizations of crys-
tal orientations.

in the microscale simulations is a rate-dependent plasticity model, the concurrent multiscale sim-
ulation is performed at a relatively low far-field strain rate (0.001/s) and samples the macroscale
model over limited strain rates. In efforts to generalize the results presented here, future work is
needed to address the effects of disagreement between macroscale and microscale material mod-
els regarding strain rate, plastic anisotropy, and multiphysics. For this study, the analysis focuses
exclusively on the behavior of the microscale model within the concurrent multiscale framework.

In an attempt to reduce the data in a manner consistent with experimental data, engineering
quantities were converted to true stress and true strain through the volume preservation assumption.
To avoid convolving structural softening with the monotonic hardening exhibited by the model for
homogeneous deformation, the microscale data were terminated for the fitting process at a strain of
0.04, which is prior to the onset of necking. In conjucntion with the J2 yield function, the nonlinear
hardening model of [77],

σy = σ0 +Hεp + S(1− e−αεp) (18)

was employed, with a yield surface partitioned through a yield stress σ0, linear hardening term
H , and a saturation hardening term governed by S and α. The yield stress σ0 is chosen to be the
departure from linearity at ~144 MPa. Small elastic strains were extracted in uniaxial stress through
the assumption of isotropy with a Young’s Modulus of 196 GPa. Fortunately, the parameterization
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of the J2 model is sufficiently straightforward to permit rapid sensitivity studies and a manual fit
that roughly minimizes the error by capturing mean behavior with continued hardening for strains
beyond the simulated necking process. The resulting parameters are noted in Table 4. The reduced
stress-strain curves and the proposed J2 fit are illustrated in Figure 6.

Table 4. J2 plasticity parameters fit to the reduced crystal plas-
ticity simulations.

Elasticity Hardening
E (GPa) ν σ0 (MPa) H (MPa) S (MPa) α

195.0 0.3 144 300 170 190

0.00 0.01 0.02 0.03 0.04
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Figure 6. Reduced true stress-strain curves and the J2 fit of ten
realizations of crystal orientations.

2.2 Concurrent multiscale modeling with the Schwarz Alternating Method

In order to concurrently model a domain combining the micro- and macroscale model behavior
detailed above, the Schwarz alternating method was applied. The Schwarz alternating method
was introduced by Hermann Schwarz in 1870 [76] to prove the existence of harmonic functions
in irregular domains by expressing them as the union of domains of regular shape, for example
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rectangles and circles. Thus understood, the method relies on knowledge of analytical solutions
on simple domains, but the same framework can be applied to couple numerical solutions on mul-
tiple overlapping subdomains to achieve a solution on a combined domain. Recently, the method
has been employed to couple atomistic and continuum scales in [29, 63, 65, 83], to couple dis-
tinct physics in different subdomains such as fluid-structure interaction [24] and computational
fluid dynamics with aero-acoustics [15, 73]. Recently, the Schwarz alternating method has been
demonstrated for use in concurrent multiscale continuum-to-continuum coupling of an arbitrary
number of subdomains for finite-deformation solid mechanics, along with proof of a theoretical
guarantee of convergence under certain restrictions that are typically met in such analyses [51]. A
detailed description of the method is found in [51], but a brief summary is given below.

The Schwarz alternating method proceeds to solve a BVP with associated energy functional
Φ[ ϕ] on a domain Ω by solving a sequence of BVPs with associated energy functionals Φi[ ϕ]
on a set of N subdomains Ω1...N with ∪Ni=1Ωi = Ω. The induced ordering is arbitrary except
that there must be an overlap region between consecutive subdomains; that is, Ωi ∩ Ωi+1 6= ∅ for
i ∈ {1, N − 1} and ΩN ∩ Ω1 6= ∅. The boundary conditions on the subset ∂φΩ of the boundary
of the combined domain are augmented with Schwarz boundary conditions on the subsets Γi of
the boundaries of the subdomains Ωi, as follows. The values of the primary solution variables on
domains 2 . . . N are typically initialized with the trivial solution, the solutions from these subdo-
mains are interpolated onto Γ1 = ∂Ω1∩∪Ni=2Ωi, and then the augmented BVP is solved on Ω1. The
solution from Ω1 is then interpolated on the boundary Γ2 of the next subdomain Ω2, and the BVP is
solved therein. Subsequently, the interpolated solution in Ω2 is transferred as a boundary condition
to the next subdomain, and so on through the N subdomains. Finally, the solution is computed on
the last subdomain ΩN , and the solution from this last subdomain is interpolated onto the boundary
Γ1 of the first subdomain Ω1, and the cycle continues until convergence is achieved. In this study, a
tolerance of 10−6 applies to the norm of the global residual to indicate convergence. The iterative
solution process is summarized in Algorithm 1.

Algorithm 1 Schwarz Alternating Method
1: ϕ(0) ← id X in Ω2...N . initialize to zero displacement or a better guess in Ω2...N

2: n← 1
3: repeat . Schwarz loop
4: i← mod(n− 1, N) + 1 . Cycle through N domains
5: ϕ(n) ← χ on ∂ ϕΩi . Dirichlet BC for Ωi

6: ϕ(n) ← PΩj→Γi [ ϕ
(n−1)] on Γi . Schwarz BC for Ωi

7: ϕ(n) ← arg min
ϕ∈Si

Φi[ ϕ] in Ωi . solve on Ωi in the space of admissible functions Si
8: n← n+ 1
9: until converged

As proved in [51], this iterative procedure is guaranteed to converge linearly to the solution
arg min ϕ∈S Φ[ ϕ] on the combined domain for the finite deformation solid mechanics problem.
It is noted that the rate of this convergence increases with increasing overlap between the sub-
domains, so that the computational demands of computing constitutive response in the overlap
regions should be balanced with the cost of recomputing equilibrium in order to optimize the over-

27



all cost.

In this study, the Schwarz method is applied to the domain shown in Figure 7, which comprises
an ASTM standard tensile specimen scaled down so that the square gauge section has dimensions
100µm x 100 µm. Each grip end of the specimen is modeled as a separate subdomain, and the

Figure 7. Subdomains of tensile specimen. The domain is split
into two grip subdomains, each colored blue, and a microstruc-
tural subdomain at the center of the gauge section, colored by grain
number. The 50µm overlap regions can be seen at either end of the
microstructural subdomain.

central part of the gauge section is a third subdomain. There is an overlap of 50µm of the gauge
subdomain with each of the grip subdomains, which is chosen to balance the computational costs
of computing global equilibrium with the costs of computing the local constitutive response. The
macroscale model detailed in Section 2.1 is employed in the grip subdomains, where the mesh has a
characteristic element length on the order of 10µm, and the microscale model discussed in Section
2.1 is employed in the gauge section subdomain, where the characteristic element length is 2.5µm.
It is noted that this difference in element size translates to a reduction in the condition number of
the global tangent stiffness of 2-3 orders of magnitude in the Schwarz simulation compared with a
solution on a monolithic domain with a graded mesh. The following section presents the results of
applying this simulation setup to study the onset of necking localization.
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3 Concurrent multiscale: Findings

The multiscale simulation is conducted to apply a loading of approximately uniaxial stress to the
gauge section of the tensile specimen. The inside surfaces of the holes in the grips are rigidly
displaced at a rate of 10−4 mm/s to achieve a constant engineering strain rate of approximately
10−4 s−1 as measured from the grip displacement. The simulation is run until this strain measure
reaches approximately 0.5%. Due to the localization of the deformation in the gauge section, the
strain measured from the ends of the microscale subdomain at the end of the simulation is close
to 4%. Furthermore, as seen in Figure 8, the local strain approaches 20% where necking is in-
cipient, representing more than an order of magnitude increase over the macroscopic strain level
and five times the strain that would be observed with a typical experimental extensometer-based
strain measurement. To provide a more quantitative measure of localization, the cross-sectional

Figure 8. Contour of F11–the normal component of the defor-
mation gradient in the loading direction. Localization is evident in
the regions with red coloring.

area of the microscale domain is measured at each load step during the simulation. These mea-
surements are performed by computing the convex hull of nodes comprising 5µm slices of the
domain and measuring the area in each slice. In Figure 9(a), the change in this cross-sectional area
is plotted as a function of position along the axial direction. Near the position of −50µm, the area
is seen to be reducing more rapidly than in the rest of the gauge section, indicating the onset of
necking in that region. This trend is also evident in Figure 9(b), where the rate of area reduction
is shown to be consistently greater in the vicinity of the−50µm position throughout the simulation.

The importance of employing concurrent multiscale coupling to transfer structural loads to the
microstructure becomes clear when comparing these results to traditional methods of imparting
deformation through "fixed" or "symmetry" boundary conditions. The corresponding reduction
in area is plotted for the three sets of boundary conditions in Figure 10. In the figure, the label
Symmetry BC indicates the application of a symmetry boundary condition, where homogeneous
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Figure 9. (a) Reduction in cross-sectional area over time. Local-
ization is evident in the vicinity of−50µm, where the area is being
preferentially reduced. (b) Rates of area reduction as a function
of time. The signature of localization is seen in locations around
−50µm, as in (a).

x-, y-, and z-displacement boundary conditions are applied to the negative x-, y-, and z-faces of
the microstructure, respectively. In the Fixed BC case, homogeneous y- and z-displacement condi-
tions are imposed at both ends. In both of these cases, the x-displacement is subject to a spatially
uniform time-dependent boundary condition that maintains parallel and planar opposing x-faces.
The same set of grain orientations is applied in each simulation. The data in Figure 10 is extracted
from the three simulations when the minimum cross-sectional area is roughly 9600µm2. It is clear
from these results that the fixed boundary conditions are inappropriate for modeling necking due
to the overconstraint in the plane of the cross-section at the ends of the specimen. This is cer-
tainly not surprising, but it bears mention, as this is one of the most commonly applied boundary
conditions in studying microstructural response. The symmetry and Schwarz boundary conditions
produce more realistic profiles; however, in both cases, localization is most pronounced in the
vicinity of the applied boundary conditions. For the symmetry boundary conditions, this is the end
of the specimen, and for the Schwarz boundary conditions, this is the end of the overlap region,
which is located at −50µm. For the symmetry boundary conditions, there is overconstraint of the
x-displacement at the end of the specimen where necking is incipient. Whether this drives the lo-
cation of the localization is not clear from a single simulation. For the Schwarz case, more study is
required to determine whether this is a coincidence, or whether there is additional stress concentra-
tion at the boundary due to overconstraint owing either to the larger element size or the dissimilar
material model employed in the grip section. If this is the case, mesh refinement can be used to
eliminate the former problem, and material model iteration could eliminate the latter problem. A
clear takeaway from these results is that careful choice of boundary conditions is critical to obtain
quantitative information about necking.
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Figure 10. Cross-sectional area profiles for simulations employ-
ing symmetry, fixed, and Schwarz boundary conditions.

In Figure 11, the stress-strain response of the gauge section is plotted. The whole-domain
average stress and strain, plotted with the solid lines, show the expected trends, as follows. The
normal stress σ11, shown in Figure 11(a), increases monotonically with the strain ε11 in a man-
ner typical of elasto-viscoplasticity with hardening. The transverse stress σ22, shown in Figure
11(b), is approximately zero throughout the simulation while the transverse strain ε22 decreases
monotonically due to the expected Poisson effect, indicating a uniaxial stress condition. Lastly,
as shown in Figure 11(c), the shear stress σ12 and shear strain ε12 are nearly zero throughout the
simulation, indicating the expected decoupling of the shear and normal components of the stress
and strain. Also plotted in Figure 11 are the average stresses and strains associated with each grain
in the microstructure. These quantities exhibit much more interesting behavior, with complicated
anisotropy, non-uniaxial stress states, non-monotonic behavior, and coupling of normal and shear
deformation. One striking feature is that the magnitude of the local transverse normal and shear
stresses approach 40% and 20% of the average axial normal stress, respectively. This is a strong
indication that failure models that are sensitive to triaxial or shear loading require local knowledge
of the stress state to function effectively, and that the current framework will make this information
available to such models in a way that the macroscale phenomenological model cannot.
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Figure 11. Stress-strain response of microstructural domain: (a)
Normal, along tensile axis; (b) Normal, perpendicular to tensile
axis; (c) Shear in transverse plane. The solid lines with closed
symbols correspond to the average response of the entire mi-
crostructural domain. The dashed lines correspond to the grain-
averaged quantities.
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4 Progress in crystal plasticity

During the inception of this program, we initiated a refactor of the crystal plasticity model initiated
by Reese Jones in the LCM research environment. As a team, we agreed that an implicit update
of the slips and the internal variables governing the hardening was needed. We also sought to
provide developers with multiple residuals that stemmed from crystal structure, elasticity, flow
rules, and hardening laws. Through automatic differentiation and new packages for solution, we
can accommodate the complexity inherent in discovery. A notional figure illustrating both the
dominant crystal physics and the requisite numerics is illustrated in Figure 12. Instead of viewing
the constitutive model as input physics that “plug” into our finite element code via an interface, we
envision a modular model having multiple physics that can be interchanged to capture the dominant
mechanisms for the crystal of interest.

kinematics crystal
elasticity

slip
systems

power-law
flow
rule

slip-based
hardening

implicit
update

slip 
residual

constant or 
tangent
predictor

Hessian
via

Sacado

Newton
via

MiniSolver

agile, modular approach to crystal plasticity

twin
systems

rate
independent

predictor

Trust Region
via

MiniSolver

exponential
flow
rule

hardening
via internal 
variables

slip + ISV 
residual

GPUs
via

Kokkos

constitutive 
model

interface

crystal physics

requisite numerics

Figure 12. A modular approach to crystal plasticity having the
desired crystal physics and requisite numerics.

Resolving the complex and coupled physics requires a modular method for solution that incor-
porates multiple residuals, predictors, and solution methodologies. MiniSolver provides a frame-
work for the solution of the local, highly nonlinear system of equations that arises from an im-
plicit integration scheme of the constitutive model. MiniSolver is a component of the MiniTensor
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library, which in turn is part of the Trilinos library for numerical computation.∗ MiniSolver pro-
vides solution schemes such as Newton-Raphson, conjugate gradient, trust region, different types
of line search, etc., in a manner that is independent of the implementation details of the constitutive
model. Thus, it relieves the material model implementer from the tedious task of programming a
solution scheme, and also provides the ability to easily change solution methods. In addition, the
MiniTensor library provides the ability to write vectorial and tensorial expressions in a compact
manner, much like it is done in textbooks and journal articles. This reduces the difference between
the mathematical expression of a constitutive model and its representation in computer code, thus
improving readability and reducing implementation errors. Other aspects of illustrated modularity
are reflected in the extension to manycore architectures through Kokkos which is addressed in Sec-
tion 4.5. We highlight progress in this section through small contributions in microscale physics,
methods of solution, verification, maturation, and manycore applications.

4.1 Viscoplasticity via multiple flow rules and hardening laws

The physics of crystal plasticity is subject to phenomenology that varies with material, tempera-
ture, and strain rate. In the algorithms developed in this project, different approaches to modeling
crystal plasticity are subsumed into a single model encompassing the combinatorial complexity
arising from the modular design. The two main features of this implementation are a choice of
flow rule and a choice of hardening laws, which can be chosen in any available combination via
directives in an input file.

For the flow rule, the standard power law form of Equation (13) is one choice. A second option
is the hybrid flow rule in Equation (22), which extends the power law flow rule to apply in the
intermediate to high strain rate regime. A third option is the thermally activated flow rule,

γ̇α = γ̇α0 exp

{
− F0

kBT

〈
1−

〈
τα − sαa
sαt

〉p〉q}
(19)

which is typically employed for materials with higher Peierls stress, such as body-centered cubic
(BCC) metals.

For hardening laws, one choice is the saturation hardening law given by Equations (15), (16),
(17). Additional choices are linear hardening with recovery,

ġα = ġ = (H −Rdg) γ̇ (20)

and a dislocation-density based formulation,

gα = Aµb
√
Hαβρβ (21)

As an example of the importance of including this modularity, it was shown that for tantalum
single crystal material behavior, the choice of hardening law can lead to a predictive model or a
∗Trilinos is available on GitHub: https://github.com/trilinos
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prescriptive model calibration. This result is represented in Figure 13, where experimental [100]
data is used to calibrate the hardening law parameters, and the model predicts behavior for [110]
and [111] tests.

saturation
hardening

exponential
hardening

(a) (b)

Taylor
hardening

(c)

Figure 13. Comparing exponential hardening, saturation harden-
ing, and Taylor hardening for tantalum single crystals of multiple
orientations. Models were fit with experimental data in the [100]
orientation and then employed to predict the response in the [110]
and [111] orientations.

4.2 Incorporating drag-based flow with nonlinear root-finding

The traditional power-law relation shown in Equation (13) that dictates the flow rule exponentially
increases when the resolved shear stress on a given system α exceeds its corresponding hardening.
As the sensitivity factor m decreases, the flow rule approaches the limiting case representing elas-
tic perfectly plastic behavior, and the transition into the regime of unbounded slip rates becomes
increasingly sharp [35]. Solving the nonlinear ODE numerically becomes a computationally ardu-
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ous task since any iterate of the slip that produces a sufficiently high resolved shear stress will lead
to a high residual and Hessian matrix thus resulting in sub-optimal convergence rates, as shown
for a single slip system in Figure 14(a). It is important to note that the high shear stresses produce
slip rates that are non-physical, and are purely a result of the definition of the power-law, which
is primarily accurate in the low slip-rate regime. Therefore, it is desirable to introduce a flow rule
that is both physically admissible and contains bounded derivatives in the high stress regime. A
flow rule that satisfies these requirements can be constructed by defining a continuous partitioning
of the power-law dislocation motion with one that is viscous drag-dominated as follows

γ̇α = γ̇α0

( 1

γ̇αPL
+

1

γ̇αV D

)−1

,

γ̇αPL =
∣∣∣τα
gα

∣∣∣ 1
m
sgn(τα),

γ̇αV D =
( τα

Dgα

)
,

(22)

where D is a user-specified drag parameter that is assumed to be constant. We are defining an
effective slip rate γ̇α through the micromechanical assumption of an additive process [11]. The
flow rule shown above maintains the original power-law behavior when the resolved shear stress
on a given slip system is low relative to the hardening. Once the shear stress increases, the drag
term begins to dominate the flow rule, and eventually leads to a slip rate that grows linearly with
increasing shear stress, as is shown for a single slip system in Figure 14(b).

(a) (b)

Figure 14. Residual profile for a single slip system using (a) the
power-law flow rule, and (b) the power-law with drag flow rule.

Solving the above ODE for the slips at a given time step tn+1 poses new difficulties using
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standard root-finding algorithms such as Newton’s method. Rapid variations in slope occur within
the narrow region of slips where both the drag and the power-law terms are dominant. Moreover,
the slope remains constant in the other regions where either the drag term or the power-law term
dictate the flow rule. Using Newton’s method to solve for the slips will therefore result in oscil-
lations between the power-law and drag regimes unless the initial guess for the slips lies in the
narrow region that contains a non-constant slope. As an alternative, other root-finding algorithms
such as trust region or back-tracking line search can be used to constrain the space of admissible
iterative increments [55]. The trust region algorithm attempts to obtain a solution using a specified
bandwidth that is centered around the current iterate which can grow or shrink depending on cer-
tain parameters that indicate the sensitivity of the residual to small perturbations in the slips. This
algorithm can therefore prevent iterations from oscillating between values that are significantly
different. The back-tracking line search similarly constrains the space where the solution for the
slips is sought. This methodology uses an iterative increment obtained using Newton’s method,
and applies a uniform scaling factor to ensure that the subsequent residual is decreased by a suf-
ficient amount [7]. Both root-finding algorithms are generally robust for single slip systems, as is
shown in Figure 15. The cumulative time based on the adaptive time-stepping as well as the typical
number of material solver iterations per global step is shown in Figure 16 for a simple cube with
an imposed uniaxial strain-rate. These figures indicate that using the drag-based flow rule both
reduces the number of iterations required to obtain a solution, and permit a larger average time
step throughout the simulation.

The multi-slip scenario significantly changes the nature of the ODE for the slips. Figure 17
plots the natural logarithm of the absolute value of the residual for a given slip system of a material
that contains 12 slip systems. Each point represents a state of 12 random slips. In addition, larger
circles indicate a more prominent drag on the given slip system. This figure clearly illustrates that
a fixed value of slip on the current iterate can result in a widely varying value of the residual, since
it depends on the state of all 12 systems.

A model problem used to test the robustness and accuracy of the numerics is the Rubik’s cube
block shown in Figure 18 that consists of 27 equal-sized blocks, each with random crystal ori-
entations and a 12 slip-system FCC lattice structure. Considering a representative material point
at the initial simulation step and a sufficiently small time step to ensure convergence, Figure 19
relates the iterative process of each component of the slips and residual to the 2-norm of the 12-
component residual. Figure 19(a) illustrates a monotonic convergence using the power-law flow
rule without drag. It is evident that with a sufficiently small time step, each iteration preserves
the dominant slip systems, without generating finite slips in other components that are not initially
active. Adding the drag term as shown in Figure 19(b) initially leads to a different set of active
slips which is corrected mid-way through the iterative process thus leading to a sudden increase in
the total residual. By limiting the rate at which the slips can grow at high strain-rates, the drag-
based flow rule enables the activation of certain slip systems that are not naturally prominent in
the power-law flow rule. In order to mitigate this effect, it is desirable to incorporate constraints
into the root-finding algorithm that prevent the iterative solution from diverging or oscillating. In
contrast to the single-slip example, the standard criterion for the line search that accepts an incre-
ment based on the desired reduction in the residual does not guarantee monotonic convergence, as
is highlighted in Figure 19(b). Another reduction criterion can be selected to produce an increment
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(a) (b)

(c)

Figure 15. The incremental solution path for the power-law with
drag residual of a single slip system using (a) Newton’s method,
(b) trust region, and (c) back-tracking line search.
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(a) (b)

Figure 16. Comparison of (a) the elapsed model time for a given
simulation step, and (b) the total material model iterations per time
step using Newton’s method with and without drag, trust region,
and back-tracking line search.

Figure 17. Profile of a single component of the power-law with
drag residual using random combinations of slips for a 12 slip sys-
tem material point.
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that only contains slips that exhibit a finite power-law behavior, and is thus relatively far from the
drag-dominated regime. This requirement prevents the Hessian matrix from containing individual
components with significantly varying tangents. However, this criterion does not guarantee con-
vergence, even within the narrow range of power-law dominated slips. Other possibilities that can
be explored in the future include variants of the trust-region and line search algorithms, as well as
other constrained optimization techniques such as the barrier method.

Figure 18. The Rubik’s cube block setup.

4.3 Verification through quad-slip

The computational infrastructure employed in our research environment was verified through nu-
merous regression tests that focused on particular features of the crystal plasticity implicit update.
Because our implementation permits the specification of a single slip system, were first developed
analytical/computational approaches to verification through single slip under uniaxial strain in
Mathematica [84]. We verified the evolution of slip to 15 significant figures. Although single-slip
is indeed helpful, we seek additional cases which permit specification of all 12 FCC slip systems
with idealized loadings that activate a subset of the slip systems.

In this section, we consider a particular crystal orientation under uniaxial stress. We will show
that the resulting slip is relegated to four slip systems and henceforth refer to this particular case
as quad-slip. For all intents and purposes, the case reflects a single degree of freedom for solution.
The magnitude of slip on each of the four slip systems is identical. Moreover, both F e and F p have
a diagonal character. Given an imposed stress, we can solve for F e and essentially post-process
slip with exponential updates for F p. To illustrate the construction and utility of this approach, we
first define a rotated basis

e1 =
1√
2

1
1
0

 , e2 =
1√
2

−1
1
0

 , e3 =

0
0
1

 (23)
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(a)

(b)

Figure 19. The iterative solution and residual path for a represen-
tative material point in the Rubik’s cube problem using (a) power-
law flow rule and Newton’s method, and (b) power-law with drag
flow rule and Newton’s method.
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In this rotated basis, the 6x6 matrix of the components of the elasticity tensor is

[L] =



1
2

(C11 + C12 + 2C44) 1
2

(C11 + C12 − 2C44) C12 0 0 0
1
2

(C11 + C12 − 2C44) 1
2

(C11 + C12 + 2C44) C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C11 − C12 0 0
0 0 0 0 2C44 0
0 0 0 0 0 2C44

 (24)

A uniaxial stress state is imposed; that is,

σ =

σ11 0 0
0 0 0
0 0 0

 (25)

For the initial elastic step, this stress state is obtained when applying a velocity gradient of the
form

L = Le = ε̇

1 0 0
0 −ν1 0
0 0 −ν2

 (26)

over a time increment ∆t. Here, ε̇ is the applied strain rate, and ν1 and ν2 are the appropriate
Poisson’s ratios. Assuming an additive decomposition of the velocity gradient into elastic and
plastic parts, as in Equation (7), leads, via Equation (8) to the differential equation,

Ḟe = Le · Fe (27)

The approximate update for Fe is then

(Fe)n+1 = exp (Le∆t) · (Fe)n (28)

Assuming that (Fe)0 = I, Fe will retain a diagonal form for its component matrix during the elastic
steps; that is,

Fe =

(Fe)11 0 0
0 (Fe)22 0
0 0 (Fe)33

 (29)

For σ as in Equation (25),

τα = (Fe)11 (Fe)22 (Fe)33 σ11 (Pα)11 (30)

For a diagonal Fe, (Pα)11 = (Pα
0 )11, and

τα = (Fe)11 (Fe)22 (Fe)33 σ11 (Pα
0 )11 (31)

The bases in Equation (23) are chosen such that (Pα
0 )11 is nonzero only for slip systems {7, 8, 10, 11}

in Table 2. The matrices of components in the rotated basis for the active slip systems are

P5
0 =

−
1√
6

0 1√
12

1√
6

0 − 1√
12

− 1√
3

0 1√
6

P6
0 =


1√
6

0 − 1√
12

− 1√
6

0 1√
12

1√
3

0 − 1√
6

P11
0 =

−
1√
6

0 − 1√
12

− 1√
6

0 − 1√
12

1√
3

0 1√
6

P12
0 =


1√
6

0 1√
12

− 1√
6

0 − 1√
12

− 1√
3

0 − 1√
6


(32)
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From Equations (30) and (32),

τ 6 = τ 12 = −τ 5 = −τ 11 = τ =
1√
6

(Fe)11 (Fe)22 (Fe)33 σ11 (33)

Assuming that the flow rule γ̇α (τα) is the same for each system,

γ̇6 = γ̇12 = −γ̇5 = −γ̇11 = γ̇ (34)

This would require, for example, equivalent hardening on each system,

ġ6 = ġ12 = ġ5 = ġ11 = ġ (35)

If the slip resistance is initially the same on each system, and the evolution of the resistance is a
function of the absolute value of the slip rate on the system, as is common, the flow rule is expected
to remain the same for each system. Given the relationships in Equation (34), and the definition in
Equation (9),

L∗p = 2

√
2

3
γ̇

1 0 0
0 0 0
0 0 −1

 (36)

Thus, given an applied velocity gradient with a diagonal component matrix in the rotated basis,
the elastic and plastic parts of the velocity gradient will retain diagonal component matrices, and
so too will Fe and Fp. Now, the Cauchy stress σ is given in terms of the second Piola-Kirchhoff
stress S in the intermediate configuration by

σ =
1

det (Fe)
Fe · S · FT

e (37)

With Fe diagonal, and only σ11 nonzero as in Equation (25), attention is restricted to

σ11 =
1

(Fe)11 (Fe)22 (Fe)33

S11 (38)

Substituting from Equation (38) into Equation (33),

τ =
1√
6
S11 (39)

The elasticity relation for the stress S is written in terms of the elastic Lagrangian strain Ee as

S = L : Ee (40)

For S11, this implies

S11 = L11kl (Ee)kl =
1

2
L11kl [(Fe)mk (Fe)ml − δkl] (41)

For L as in Equation (24), this implies

S11 =
1

2
{L1111 [(Fe)m1 (Fe)m1 − 1] + L1122 [(Fe)m2 (Fe)m2 − 1] + L1133 [(Fe)m3 (Fe)m3 − 1]}

(42)
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Given that Fe is diagonal,

S11 =
1

2

{
L1111

[
(Fe)

2
11 − 1

]
+ L1122

[
(Fe)

2
22 − 1

]
+ L1133

[
(Fe)

2
33 − 1

]}
(43)

Combining Equations (33), (38), and (43),

τ =
1√
24

{
L1111

[
(Fe)

2
11 − 1

]
+ L1122

[
(Fe)

2
22 − 1

]
+ L1133

[
(Fe)

2
33 − 1

]}
(44)

From S22 = 0, [
(Fe)

2
22 − 1

]
= −L2211

L2222

[
(Fe)

2
11 − 1

]
− L2233

L2222

[
(Fe)

2
33 − 1

]
(45)

From S33 = 0, [
(Fe)

2
33 − 1

]
= −L3311

L3333

[
(Fe)

2
11 − 1

]
− L3322

L3333

[
(Fe)

2
22 − 1

]
(46)

Combining Equations (45) and (46),[
(Fe)

2
22 − 1

]
=
L2233L3311 − L3333L2211

L2222L3333 − L2233L3322

[
(Fe)

2
11 − 1

]
(47)

Substituting back into Equation (46),[
(Fe)

2
33 − 1

]
=
L3322L2211 − L3311L2222

L2222L3333 − L2233L3322

[
(Fe)

2
11 − 1

]
(48)

Substituting from Equations (47) and (48) into Equation (44),

τ =
1√
24

{
L1111 −

L1122L3333L2211 − 2L1133L3322L2211 + L1133L3311L2222

L2222L3333 − L2233L3322

}[
(Fe)

2
11 − 1

]
=τ0

[
(Fe)

2
11 − 1

]
(49)

Now, (
Ḟe

)
11

= (Le)11 (Fe)11 =
[
(L)11 − (Lp)11

]
(Fe)11 =

[
ε̇− 2

√
2

3
γ̇

]
(Fe)11 (50)

Taking γ̇ as in Equation (13),

(
Ḟe

)
11

=

[
ε̇− 2

√
2

3
γ̇0

(
τ

g

)1/m
]

(Fe)11 (51)

Substituting from Equation (49),

(
Ḟe

)
11

=

ε̇− 2

√
2

3
γ̇0

(
τ0

[
(Fe)

2
11 − 1

]
g

)1/m
 (Fe)11 (52)
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Taking ġα as in Equation (15), with the relationships in Equations (34) and (35), the evolution of
the slip system resistance is governed by

ġ =
4

3
ġ0

(
gs − g
gs − g0

)
γ̇

=
4

3
ġ0γ̇0

(
gs − g
gs − g0

)(
τ0

[
(Fe)

2
11 − 1

]
g

)1/m

(53)

The saturation hardness is

gs = gs0

∣∣∣∣∣∣4
(
τ0

[
(Fe)

2
11 − 1

]
g

)1/m
∣∣∣∣∣∣
ω

(54)

Substituting from Equation (54) into Equation (53),

ġ =
40

3
ġ0γ̇0


gs0

∣∣∣∣∣4
(
τ0[(Fe)211−1]

g

)1/m
∣∣∣∣∣
ω

− g

gs0

∣∣∣∣∣4
(
τ0[(Fe)211−1]

g

)1/m
∣∣∣∣∣
ω

− g0


(
τ0

[
(Fe)

2
11 − 1

]
g

)1/m

(55)

Equations (52) and (55) form a set of coupled, non-linear ordinary differential equations in (Fe)11

and g. The saturation hardness is achieved when ġ = 0. This is the case for (Fe)11 > 0 when
g = gs. That is, when

g = gs0

∣∣∣∣∣∣4
(
τ0

[
(Fe)

2
11 − 1

]
g

)1/m
∣∣∣∣∣∣
ω

(56)

Solving Equation (56) for g,

g = gs0
m

m+ω

{
4mτ0

[
(Fe)

2
11 − 1

]} ω
m+ω (57)

When the hardening has saturated, presumably the stress is constant, so that from Equation (52)

ε̇ = 2

√
2

3
γ̇0

(
τ0

[
(Fe)

2
11 − 1

]
g

)1/m

= 2

√
2

3
γ̇0

(
τ0

[
(Fe)

2
11 − 1

]
gs0

m
m+ω

{
4mτ0

[
(Fe)

2
11 − 1

]} ω
m+ω

)1/m

= 2

√
2

3

γ̇0

4
ω

m+ω (gs0)
1

m+ω

{
τ0

[
(Fe)

2
11 − 1

]} 1
m+ω (58)

Solving Equation (58) for (Fe)11,

(Fe)11 =

{
4ωgs0
τ0

(√
3

8

ε̇

γ̇0

)m+ω

+ 1

}1/2

(59)
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From Equations (39) and (49), then the saturated flow stress S̄11 is

S̄11 =
√

6 4ωgs0

(√
3

8

ε̇

γ̇0

)m+ω

(60)
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Figure 20. Constitutive response (solid line) for a strain rate of
100 s−1. Model equations are (52) and (55), with parameters taken
from Table 5. The dashed line is the saturated flow stress S̄11 cal-
culated from Equation (60).

Table 5. Crystal plasticity parameters employed for verification
in uniaxial stress.

Elasticity Flow Hardening
C11(GPa) C12(GPa) C44(GPa) m γ̇0 ġ0(MPa) gs0(MPa) g0(MPa) ω

204.6 137.7 126.2 0.02 10−3 s−1 2× 104 202 90 0.01

4.4 Porting to the LAME material library

The crystal plasticity constitutive model developed in this project was ported from the LCM code
to the Library of Advanced Materials for Engineering (LAME), which is the material model library
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used by the Sierra/SolidMechanics analysis code. Our strategy was to employ LCM as a vehicle for
scientific exploration and algorithm development, and to transfer sufficiently mature technology
to Sandia’s ASC IC production codes where resources allowed. This approach is intended to
maximize flexibility in the prototyping phase, while avoiding negative repercussions for the IC
development teams.

Transferring technology that has been vetted in LCM to the IC codes is a primary mechanism
for providing impact to the Sandia analyst community. In addition to providing direct analyst
access to the constitutive model, the porting process also enables use of the constitutive model
in conjunction with the vast Sierra toolset, for example in explicit transient dynamic simulations
involving contact. In the case of the crystal plasticity constitutive model, source code was trans-
ferred directly from LCM to LAME. This was possible due to the LAME API, which provides a
general interface for material models, and due to prior work by the Sierra and Trilinos teams to
make Trilinos packages available within Sierra/SM.

The primary challenge in the porting process was adapting the LCM version of the material
model to operate within the LAME and Sierra/SM infrastructures. The main tasks were:

• Implement Sierra/SM input deck parsing.

• Create conversion routines to load Sierra/SM input deck data into a ParameterList
structure for use with the crystal plasticity model.

• Register proper state variables within the Sierra/SM framework.

• Implement routines for copying state data between Sierra/SM structures and crystal plasticity
structures.

• Implement simplified routines for specifying lattice orientation within Sierra/SM

– Provide a sensible set of predefined crystallographic structures (e.g., FCC, BCC).

– Allow users to input orientations directly from the genesis mesh file via the variable
initialization functionality in Sierra/SM.

• Strip all global-level automatic differentiation from the crystal plasticity model. Automatic
differentiation is used in LAME within the constitutive model’s state update routine, but is
not passed between the material model and Sierra/SM as it is in LCM.

• Remove all use of LCM-specific data types from the crystal plasticity model.

• Write Sierra/SM tests that exercise the material model.

Care was taken in the porting process to ensure that both the LCM and Sierra/SM implemen-
tations imposed identical requirements on the genesis mesh file. That is, a mesh file created for
use with LCM can be used directly in Sierra/SM, and vice versa. This is particularly important for
discretizations of polycrystals because of the need to specify grain orientations and the potential
for a large number of grains within a given mesh. Both LCM and Sierra/SM allow for the use of
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polycrystal meshes in which each grain is tracked as a block, and in which the entire polycrystal
is tracked as a single block. In the first case, the grain orientations may be prescribed for each ele-
ment in the mesh file, or may be listed on a per-block basis in the input deck. In the second case,
where the entire polycrystal is tracked as a single block, the grain orientations must be prescribed
per element in the mesh file. Preprocessing tools were developed under this project to facilitate the
creation of both types of polycrystalline meshes.

Several challenges related to the LCM and Sierra software development and testing environ-
ments impacted the porting process. The LCM source code was significantly modified to enable
compatibility with the Sierra framework. A lasting consequence of these modifications is that it
is not straightforward to maintain consistency between the two implementations, mainly because
it is difficult to directly compare the source files. That is, the number of differences in the files
that resulted from the porting process make it very difficult to identify differences that result from
ongoing improvements to the model implemented in LCM. A second, high-level challenge results
from differences in the build and test processes for LCM and Sierra. Specifically, the versions
of Trilinos used by LCM and Sierra are generally not synchronized, which creates incompatibili-
ties for newly-implemented Trilinos functionality. Additional challenges are tied to differences in
compilers, compiler options, and test platforms for Sierra and LCM, which can result in code that
compiles and passes the testing process in LCM, but either fails to compile or fails tests in Sierra,
and vice versa.

4.5 Extension to manycore architectures

Porting large, complex scientific and engineering application codes to manycore architectures is
complicated due to a variety of programming models, application programming interfaces (APIs),
and performance requirements. A major challenge in utilizing heterogeneous resources is the di-
versity of devices on different computing platforms, which provide widely varying performance
characteristics. A program or algorithm optimized for one architecture may not run as well on
the next generation of processors or on a device from a different vendor. A program or algorithm
optimized for GPU execution is often very different from one optimized for CPU execution. The
relative performance of CPUs and GPUs also varies between computing platforms. On one ma-
chine, a specific portion of a computation may run best on the CPU, while on another machine it
may run best on the GPU. In some cases, it is best to balance the workload between the CPU and
the GPU; in other cases, it may be best to execute an algorithm on a device where it runs more
slowly but closer to where its output is needed as to avoid expensive data transfer operations. This
leads to a situation where an application code may have several implementations that are optimized
for different architectures. In addition to the complexity of writing specialized codes, this approach
leads to poor code maintainability: every new change to the code needs to be implemented in all
versions.

Thus, the portability of the performance of a single code base is critical: parallel code needs to
be executed correctly and remain performant on machines with different architectures, operating
systems and software libraries. To this end, in this section we explore a new approach for achieving
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performance portability in the LCM platform by using the Kokkos library.† Specifically, we target
the constitutive model infrastructure in LCM for parallelization via Kokkos, as this can be done in
a much shorter time than modifying other parts of the code.

We parallelized two materials models: a standard J2 plasticity model extended to the finite de-
formation regime, and the crystal plasticity model used throughout this report. A tailored material
point simulator was written to determine the speedup in execution time with respect to the number
of cores. Four sets of numerical experiments were conducted using the OpenMP parallel model
available to Kokkos: 1000 and 1,000,000 instances of the J2 model, and 1000 and 10,000 instances
of the crystal plasticity model. The results are shown in Figure 21. In the figure, the black dotted
lines represent ideal speedup. The purple line represents the speedup for the total execution time,
including parts of the code that have not been parallelized. The blue line represents the speedup for
the numerical computation time, again including parts of the code that have not been parallelized.
The red line, which is the more relevant here, represents the speedup of the constitutive model
itself, which is the only part of the code that was parallelized for these experiments.

The results in Figure 21(a) show that with 1000 instances of the J2 model, the peak speedup is
about 13 for 16 cores. Thereafter, adding cores to the computation leads to worse performance. By
contrast, increasing the number of J2 instances to one million (Figure 21(b)) leads to increasing
performance with increasing number of cores up to 32 cores, which is the maximum that was used.
This suggests that the J2 model is relatively inexpensive in terms of computation, and thus, with as
little as 1000 instances, there will be a point where adding more cores to a computation will starve
them of work, leading to worse performance.

By contrast, we observe speedup for both 1000 and 10,000 instances of the much more compu-
tationally demanding crystal plasticity model, as shown in Figures 21(c) and 21(d). This suggests
that to take full advantage of manycore architectures, starvation should be avoided. For relatively
simple material models, this requires providing many instances of the material to each core to keep
them busy. Complex material models like the crystal plasticity model appear to be sufficiently
computationally intensive to keep cores busy even when using relatively few instances.

4.6 Robustness suite

During the course of this project, we attempted to focus on some aspects of test-driven develop-
ment. We did devote resources to verification. We did investigate problems of increasing com-
plexity for multiple numerical methods. We wanted, however, to begin to put some rigor behind
particular studies so we could determine the robustness of particular input physics and numerical
methods. To better examine these issues, we developed a python infrastructure to automatically
populate and execute parametric studies for problems of increasing complexity. The kernel of the
idea is expressed in Figure 22. Scripts incorporate parameters that govern multiple flow rules, hard-
ening laws, numerical methods, discretizations, and time steps. A common theme in the analysis
of polycrystals is the size of the implicit time step. We correlate a larger time step with increased

†Kokkos is available on GitHub: https://github.com/kokkos
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(c) (d)

Figure 21. Speedup for the OpenMP parallel implementation of
the J2 and crystal plasticity models using Kokkos. (a) 1000 in-
stances of the J2 model. (b) 1,000,000 instances of the J2 model.
(c) 1000 instances of the crystal plasticity model. (d) 10,000 in-
stances of the crystal plasticity model.
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robustness and developed tools to mine log files for global iterations, convergence rates, and time
steps.

(single/multi-slip
1 element

Rubiks’s cube
~102 elements

polycrytal
~104-105 elements

polycrytal
~106-107 elements

small
step

medium
step

large
step

developing tools to mine log files
to measure robustness

Figure 22. We developed a robustness suite to quantify and mon-
itor the performance of our algorithms for problems of increasing
complexity.

Although the robustness suite is still in flux, one can access problems of increasing complexity
through the SolidMechanicsExamples repository.

git clone https://code-source.sandia.gov/git/SolidMechanicsExamples

where the robustness suite is found in

SolidMechanicsExamples/LCM/CrystalPlasticity/robustnessTests

having an upper level python script makeFiles.py. Because of the combinatoric nature of these
parametric studies, even relatively idealized problems can be computationally expensive. Hence,
the true value of this suite will be realized when our cluster builds are reliable on chama, skybridge,
serrano, and ghost. Although we have more to do regarding to making the robustness suite robust
(the irony is quite painful), we believe that such a suite is necessary to both quantify and monitor
the performance of our algorithms.
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5 Advances in conformal microstructures

An accurate representation of microstructural features plays an important role in mesoscale com-
putational models that explicitly resolve individual grains. The effect of detailed microstructural
features becomes more pronounced when complex localized phenomena such as localization, void
evolution, and eventual failure are considered. However, there exists some limitations to accu-
rately reproduce these realistic 3D microstructures using finite element realizations. For example,
the discretization of microstructures into finite elements generally produces voxelated interfaces
between adjoining grains that create artificial stress/strain concentrations which can potentially
trigger localization. The given element size convolutes the boundary representation with sufficient
degrees of freedom to resolve the deformation process. Furthermore, synthetic microstructures are
typically generated, where grain shapes are idealized or obtained from the output of a tiling (parti-
tioning) protocol such as Voronoi tessellation. These microstructures, albeit easy to generate, are
not informed by the energetics and thermodynamics of materials processes. In order to overcome
these shortcomings, we present a modeling framework that incorporates physically-based realiza-
tions of polycrystalline aggregates into a finite element realization that conforms to interfaces.
This technique utilizes Sandia National Laboratories’ Cubit Sculpt meshing tool [58–61, 79]. It is
shown that Cubit Sculpt provides a practical, robust and efficient tool to create interface confor-
mal realizations using both hexahedral and tetrahedral elements. A general description of Sculpt
algorithm is given by Owen [57] with recent extensions to microstructure [62]. In this section,
we focus the application. We see to employ Sculpt to generate conformal grain boundaries with
extensions to hexahedral and tetrahedral workflows.

5.1 Application to a hexahedral workflow

The interface conformal meshing technique has been successfully applied to various applications.
In this section, we present some examples of computational microstructures and the generated
meshes obtained from various techniques. Note that this meshing technique not only avoids vox-
elated representation of the microstructure, but also enables direct considerations of physically-
based polycrystalline microstructures and thus a more realistic representation of microstructural
features such as grain shapes, aspect ratios, grain boundaries and triple junctions. It is shown that
the interface conformal FE mesh generated with the proposed methods is able to significantly re-
duce errors at grain boundaries and triple junctions in mechanical simulations when compared to
an equivalent stair-step representation [43].

Figure 23 shows the finite element discretization of a polycrystalline microstructure generated
by the Monte Carlo Potts grain growth model in SPPARKS. Here, a polycrystalline domain with
143 grains are represented by 200×100×100 voxels and their corresponding IDs from SPPARKS
simulations. As shown in Figure 23 (c), Sculpt accurately reproduces smooth interfaces and junc-
tions between grains.

Another class of computational methods used to generate physically-based microstructures is
the phase-field (PF) grain growth models. The details of the PF grain growth model can be found
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Figure 23. Polycrystalline microstructure generated from kinetic
Monte Carlo grain growth simulations having 143 grains. (a) Full
FEA mesh generated from 200 × 100 × 100 grid, (b) close-up of
mesh, (c) view of three grains in FEA mesh.

in [1, 2]. In the PF model, grains are represented by the structural order parameters (OPs) and are
evolved to satisfy the energy minimization. In this work, the total free energy is represented by
the sum of bulk and interfacial energies, and the Allen-Cahn equation [6] is used for the dynamics.
Figure 24 (a) shows 3D microstructure generated from the phase field (PF) grain growth simulation
and the corresponding FE discretization [43]. It is shown that FE elements conform to the grain
topology and ensure smoothness of the interfaces between adjoining grains. It is worth noting that
since the interfaces in the phase field model are assumed to be isotropic in energy and mobility,
balance of interfacial tensions at triple junctions, where three grains meet, yields angles of 120
degrees.

In addition to computational microstructure, Figure 25 shows the FE meshes generated from
the experimental data created from electron backscatter diffraction (EBSD) measurement using a
Scanning Electron Microscope (SEM). An EBSD technique characterizes microstructural features
such as crystallography and phase of materials within a scanning grid. Crystallographic informa-
tion from EBSD data is processed to have unique grain ids for each cell of a Cartesian grid that is
used as input for the FE mesh generation procedure.

5.2 Moving to a tetrahedral workflow

Throughout the course of this effort, we were able to also invest in tetrahedral element technol-
ogy. Gaps in Sculpt and the underlying MeshGems algorithm/implementation were highlighted
and solved in FY16 and FY17 by Steve Owen and Corey Ernst. One of the improvements in the
later part of FY16 was to move from a hexahedral representation of the entire domain to a triangle
surface representation of the reconstructed grain boundaries. This enabled the implementation of
smoothing algorithms specific to triangles. The geometric representation of the microstructure was
broken into two components. The first component was a triangular surface mesh in an Exodus II
format. The second component is a s2g file containing the requisite geometric information for
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Figure 24. Polycrystalline microstructure generated from phase
field grain growth simulations having 52 grains. (a) Phase field
representation of the 3D grain microstructure. The scalar field φ is
used for visualization, where (red) blue denote (GBs) bulk grains.
(b) FE discretization of the microstructure and (c) view of three
grains in FEA mesh

EBSD FE mesh

Figure 25. Electron backscatter diffraction (EBSD) measurement
and FE discretization using interface conformal hexahedral mesh.
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vertices, curves, surfaces, and volumes. The workflow is illustrated in Figure 26. In an effort

grain growth SPPARKS

interface
reconstruction

Sculpt

mesh-based
geometry Cubit

MeshGems

tetmeshing
tetra10s

S2G file

geometry

surface
discretization

Figure 26. Tetrahedral workflow for conformal boundaries that
leverages Sculpt, Cubit, and MeshGems.

to illustrate the process, we consider the following process with components in grain growth, in-
terface reconstruction, mesh-based geometry, and tetmeshing. To generate discretized, conformal
microstructure we

1. Employ either SPPARKS or a phase field (PF) description to generate microstructure. If we
employ the PF approach, we resolve a smooth partial differential equation on a particular
grid and then voxelate the response.

2. Given that voxelated microstructure, employ Sculpt

sculpt -i spparks.i

with the input deck spparks.i having parameters

BEGIN SCULPT
input_cart_exo = spparks.g
trimesh = true
exodus_file = spparks_tris
write_geom = true
defeature = 3
smooth = no_surface_projections
laplacian_iters = 3

END SCULPT
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that write the s2g file, maximize defeaturing, limit the Laplacian smoothing to 3 iterations
rather than the default 10. Although one may indeed desire more smoothing iterations,
Laplacian smoothing will remove curvature. With shallow features near surfaces the possi-
bility of creating slivers increases with additional smoothing. Two files result from interface
reconstruction, spparks_tris.e.1.0 and spparks_tris.s2g. Additional parameters in Sculpt can
be invoked [79]. Those parameters and the defaults are exposed through the command line

sculpt --help

3. We now bring both the surface discretization, spparks_tris.e.1.0, and the accompanying ge-
ometry file, spparks_tris.s2g, into Cubit through

set developer on
import s2g "spparks_tris"

where we the import command looks for extensions *.e.1.0 and *.s2g for the surface repre-
sentation and geometry, respectively. We note that the current capability to import through
an s2g representation is only available in serial.

4. Given a geometric definition of microstructure, we employ the MeshGems tetmesher in Cu-
bit through

reset body all
volume all scheme tetmesh
trimesher surface gradation 1.2
trimesher volume gradation 1.2
set tetmesher optimize level 6 overconstrained off sliver on
set tetmesher interior points on
set tetmesher boundary recovery off
volume all size {mesh_size}
mesh volume all

where the gradation factor is slightly less than the default, 1.3. In addition, the optimiza-
tion level is maximized for element quality. Finally, one must declare the linear tetrahedral
elements to be higher order tetrahedral elements through

block all element type tetra10

and then write an Exodus file for analysis.

In parallel with Figure 23, we can discretize candidate SPPARKS microstructures with higher-
order tetrahedral elements amendable for the nearly isochoric motions associated with large plas-
tic deformations. A particular configuration at ∼0.45 engineering strain is illustrated in Figure 27.
We note that two planes of symmetry are enforced along the axis of loading which permit the
loaded faces with normals parallel to the axial direction to contract. Although the applied bound-
ary condition is one of plane stress, the anisotropy of the grains, as illustrated in prior sections,
fosters a multi-axial response. These particular simulations employed slip-based hardening and
were conducted in the Laboratory of Computational Mechanics (LCM). We achieved the illus-
trated configuration in 225 time steps. The simulation is not spellbinding. That said, we only seek
to illustrate the utility of the recently formulated composite-tetrahedral element [56] for capturing
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inhomogeneous crystal deformations and the boundary curvature that stems from random texture.
We can continue to load the body to an engineering strain of nearly ∼0.6. In particular grains, the

undeformeddeformed configuration

axial stress

configuration

Figure 27. Conformal grain boundaries reconstructed from a
grain-growth simulation and discretized with higher-order tetra-
hedral elements subjected to substantial deformations. A far-field
engineering strain of 0.45 was achieved in 225 time steps. The
volume-averaged axial stress and grain-boundary “ridges” high-
light the grain-grain interactions.

deformation is localizing along grain boundaries. The resulting localization is noted in Figure 28.
Clearly more work is needed to investigate local interactions and probe the evolution of localiza-
tion with respect to both grain morphologies and grain texture. For this portion of the work, Corey
Ernst focused on enabling a tetrahedral workflow for microstructure. To aid that process, Hojun
Lim produced 10 microstructures akin to Figure 27 having on the order of 150 grains. The resulting
microstructures ranged from 2 to 4 million tetrahedral elements. When Corey initiated this work
in FY17, no microstructure would mesh in its entirety. By the end of the fiscal year, each of the
10 microstructures would not only mesh but was placed in a test repository to ensure that it would
continue to “mesh.” We note that these developments were funded by a consortium of teams that
focused on mesh-based geometry and with an emphasis on microstructure. Additional improve-
ments to MeshGems were also accomplished through an NW LDRD devoted to the analysis of
stronglinks. These improvements include

1. Integrated MeshGems MG-CADSurf into Cubit, for triangle meshing discrete surfaces (mesh-
based/virtual geometry)

(a) Gradation control enabled on discrete geometry

(b) Triangle mesh size based on geometry approximation angle for discrete geometry

2. Resolved several MeshGems sizing problems
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Figure 28. Illustrating the axial component of the total defor-
mation gradient at and applied engineering strain of ∼0.6. The
deformation localizes along grain boundaries with local stretches
are on the order of 9.
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3. Fixed limitations on triangle meshing merged surfaces with MeshGems

4. Enhanced Sculpt to provide cleaner, smoother discrete geometry for successful tetmeshing

Through this work, we have enabled a general, tetrahedral workflow for microstructure. Our ef-
forts complement prior work in hexahedral meshing and strengthen common capabilities in the
generation and reconstruction of computational microstructure.
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6 Structure-property linkages

We have established an Academic Alliance collaboration with Professor Kalidindi at Georgia In-
stitute of Technology to understand microstructure-mechanical property relationships using a data
science approach. In this work, we demonstrate the first application of the recently formulated
Materials Knowledge Systems (MKS) framework in establishing reliable quantitative linkages be-
tween materials microstructures and their sensitivity to damage initiation [69]. Synthetic two-phase
microstructures were generated as a calibration dataset with a wide range of microstructural fea-
tures (including relative size of phases, morphology, spacing and eccentricity). The MKS frame-
work was applied to obtain a reduced-order model for the structure-property linkage, which ac-
counts for the volume averaged damage as well as the characteristics of the extremal distributions
of the local damage in the heterogeneous microstructures.

6.1 MKS framework

A typical workflow used in the implementation of the MKS framework for extracting structure-
property linkages from physics-based simulation toolsets (e.g., micromechanical finite element
models) is depicted in Figure 29 [27]. The approach starts with the generation of a dataset, where
each data point constitutes one input (i.e., microstructure) and its corresponding output (i.e., the
effective property of interest). The dataset is typically designed to include a large ensemble of
microstructures of general interest to the specific phenomenon being studied. The microstruc-
tures are typically generated digitally and the mechanical response is evaluated numerically using
established simulation tools (e.g., finite element models).

Material microstructures are quantified using the framework of n-point spatial correlations
and obtaining data-driven (objective) low dimensional representations using principal component
analysis (PCA). These PC representations of the microstructure (generally referred as PC scores)
are then utilized as features in generating the reduced-order models connecting the microstruc-
ture to the property of interest. Various cross-validation techniques are employed to quantify the
robustness and accuracies of the extracted models, and for selecting the best model. Details of
model development including two-point statistics, PCA and cross-validation can be found else-
where [Popova et al., 2017].

6.2 Dataset generation

The data generation for this study involves two main steps: (i) generation of a large ensemble of
microstructures reflecting a rich diversity in microstructural features, and (ii) FE simulation of the
damage initiation response for each microstructure in the ensemble using a suitable numerical sim-
ulation tool. A total of nine different classes of two-phase microstructures were generated using the
different techniques described in Figure 30. Each class consisted of twenty different realizations;
these were generated using nominally the same strategy but differ from other members of the same
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Figure 29. Generalized MKS workflow for extracting structure-
property linkage.
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class in some stochastic manner. The volume fraction of each phase for all the microstructures was
kept at ~50%. As a result, the observed differences in the responses of the different microstructures
included in this study are all attributed to the differences in the higher-order statistics describing
the microstructure (note that the volume fraction information constitutes 1-point statistics of the
microstructure). One example of a generated microstructure in each class is shown in Figure 30.
The loading applied here is uniaxial tension along the Y-axis. It should be noted that Classes 7
and 8 are obtained by rotating microstructures of Classes 3 and 6, respectively, by 90 degrees.
Therefore, in Class 6, the fibers are aligned with the loading direction (Y-axis), while in Class
8 the load is perpendicular to the orientation of the fibers. This allows exploration of the effect
of anisotropic features on the damage response. The microstructures depicted in Figure 30 are
discretized uniformly into 100× 100× 100 hexahedral elements.

In this work, finite element (FE) simulations of uniaxial tension were performed for each digi-
tally generated microstructure, where an elastic-perfectly plastic (no hardening) material model is
used for each constituent phase in the microstructure. Each phase was assigned a Young’s modulus
of 1000 GPa, a Poisson’s ratio of 0.3, and yield strengths of 100 MPa (softer phase) and 500 MPa
(harder phase), respectively. The softer phase is colored in red and the harder phase is shown in
blue in Figure 30. The high value of Young’s modulus was chosen to mitigate any effects from
elasticity. Uniaxial tensile strain was applied along the Y-axis up to 1% overall (average) strain at
a nominal strain rate of 10−4 s−1. The contrast in the plastic properties produces heterogeneous
stress and strain fields in the simulated microstructure that evolve significantly with the imposed
overall strain of only 1%. Planar boundary conditions were applied to the microstructure, where
one boundary plane was fixed in the Y-direction, and an appropriate displacement was prescribed
on the opposite boundary plane (on the other side of the cube).

A common approach to simulating damage evolution in materials subjected to various loading
conditions is to employ a void growth and coalescence model, where the initial porosity in the
material is used to initialize the damage variable [28, 53, 82]. Such void nucleation and growth
models can then be coupled with FE models to track damage evolution as a function of the applied
loading conditions. These approaches typically employ suitable combinations of the equivalent
plastic strain and stress triaxiality [10, 44, 46–49, 70], maximum principal tensile stress [18],
hydrostatic stress [16], equivalent stress [17] as the main drivers of damage and its evolution. In
this study, we have adopted a model based on plastic strain weighted cumulative triaxiality as a
damage initiation indicator. Since this model accounts for both stress triaxiality and the imposed
plastic strain, it captures some of the main established physics underlying damage initiation in
ductile materials. This damage indicator [10, 49] is calculated as

D(εeq) =

∫ eq

0

TF (εeq)dεeq (61)

where TF is the stress triaxiality and εep is the equivalent plastic strain. In evaluating the sensitiv-
ity of the microstructures to damage initiation, the local damage parameter defined in Eq. (61) is
evaluated for each voxel (element) in each microstructure. Although the treatment of the damage
parameter is somewhat simplified in this work, our focus here is on the development of a gen-
eral framework that allows consideration of a broad variety of definitions for the local damage
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Figure 30. 2-phase microstructure classes used in this study
along with the relevant details of how they were generated.
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parameters in future studies.

The cumulative distribution function (CDF) represents a probability that a random variable X
will have a value equal or less than x, i.e., FX(x) = P (X ≤ x). The CDF of the local damage
parameter values are obtained from the FE simulation for each microstructure. A Generalized
Extreme Value Distribution (GEVD) function is then fit only to the top 2% of the CDF values to
obtain the parameters k, σ and µ using MLE. This is done to define the effective damage parameter
based on the extreme values of the local damage parameter. This is an important distinction for
this effective damage measure, especially compared to the other simpler volume averaged damage
measure used in this study. A GEVD function is a flexible three parameter distribution, whose
Cumulative Distribution Function (CDF) is expressed as [34]

F (x;µ, σ, k) = exp

{
−[1 + k(

x− µ
σ

)]−1/k

}
. (62)

In Eq. (62), k, σ and µ denote the shape, scaling and location parameters of the GEVD function, re-
spectively. Note that the top 2% produced robust values of the GEVD parameters that showed very
little sensitivity to the choice of the CDF percentile cutoff value. Figure 31 demonstrates the top
2% of CDFs for all microstructures in Classes 6-9 (center of the Figure), and the contour plots de-
picting the spatial distribution of the top 2% of damage parameter for randomly chosen realizations
of microstructures from Classes 6-9. Analysis of the CDF curves of damage parameter shows that
the anisotropic microstructures that were loaded along the direction of the elongated phase (such as
aligned cylinders (Class 6) and microstructures with elongated grains (Class 7)) demonstrate better
performance (less sensitivity to damage initiation) than those loaded perpendicular to the interfaces
(Class 8). It can be seen from the CDF plots in Figure 31 that microstructures corresponding to
Class 7 perform the best, in terms of sensitivity to damage initiation, while microstructures of
Class 8 perform the worst, i.e., more prone to damage initiation than other microstructures. When
the CDFs are close to each other in Figure 31, the corresponding local damage parameter distribu-
tions are also similar, justifying the selection of this measure as an effective damage property of
the microstructure. Furthermore, the contour plots depicted in Figure 3 show that the higher local
damage parameter values are clustered along the interfaces on the side of the softer phase (Classes
6 and 8) or inside the softer matrix when the average spacing between the hard phase is small (e.g.,
spatially clustered spheres in microstructures of Class 9).

6.3 Reduced order model

The next step in the MKS framework is to establish a reduced-order structure-property linkage.
The PC scores obtained in the previous section represent the microstructure. As described in the
previous section, two different effective measures of damage were considered in this study: (i) the
volume averaged damage, and (ii) the set of parameters describing the characteristics of the top 2%
of the CDF for the local damage values. In the model building, the microstructure is represented
through selected features. For example, the PC scores by themselves can be selected as features. In
prior work, we have shown that polynomial products of the PC scores serve as excellent features in
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Figure 31. CDF of damage parameter (top 2%) and contour plots
of the top 2% of Damage parameter for Classes 6, 7, 8 and 9. Color
scale bar is the same for all contour plots.
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arriving at highly reliable PSP linkages [Latypov and Kalidindi, 2017]. In this work, polynomial
products of the PC scores up to 4th order were considered in the model building process. The
reduced order model was obtained using an ordinary least-squares regression technique.

In order to demonstrate the predictive capabilities of the reduced-order models developed in
this work, the predicted GEVD parameters were used to reconstruct GEVD CDFs for all the mi-
crostructures. Figure 32 demonstrates the top 2% of CDF values for all the Classes of microstruc-
tures. As expected, there are significant overlaps in the predicted CDFs (these were also present
in the original dataset extracted directly from the FE models). For convenience of viewing, the
plots are presented as four groups in Figure 32. Each shaded area in each plot represents a range
of the original GEVD fit for each microstructure Class, while the dashed lines are GEVDs from
the predicted values of µ and σ using the reduced-order models extracted in this work. Predictions
for most Classes fall into the range of the original fits. Overall, the errors are acceptable for the
current application of rank-ordering sensitivity to damage initiation.

6.4 Summary

In this work, the MKS framework was extended and applied successfully for the first time to
rank-ordering sensitivity of two-phase composite microstructures to damage initiation. The frame-
work was used to capture the complex, and not readily discernible connections between the many
features of a microstructure and its sensitivity to damage initiation. Two measures of damage
initiation were considered in the current work. The first approach considered volume averaged
values of a local damage parameter as an effective property; the second approach used GEVD
parameters that were fit to the distribution of the top 2% of the values of the damage parameter.
While the first approach offers a simple measure, the second aims to capture some aspects of the
extreme-value distributions associated with the damage initiation process. All models exhibited a
remarkable ability to capture the dominant aspects of the very complex structure-property linkages
in the microstructures studied. As expected, the model for the average values of damage parameter
produced less error compared to the models of GEVD parameters. However, the models for GEVD
parameters provide more insight into the distribution of the local damage parameter. The success-
ful application of the MKS framework to the highly complex problem studied here demonstrates
its versatility. It is indeed remarkable that the MKS framework is able to identify objectively from
the provided data the main microstructural features and their quantitative influence on the dam-
age initiation parameters. This is of particular importance for future studies aimed at establishing
PSP linkages in heterogeneous materials, as this approach does not require any ad-hoc selection of
specific microstructure measures.
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Figure 32. Top 2% of CDF of the original fit to GEVD (shaded
area) and GEVD from predicted parameters (dashed lines) for all
of the microstructures.
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7 Discussion and future work

The work presented herein represents attempts to outline a framework for investigating mecha-
nisms through the simulation of microstructure. We review our findings, reflect on lessons learned,
and plot a path for future development in each effort.

7.1 Requisite components

Concurrent multiscale

In this study, a multiscale simulation of a tensile specimen was performed. The microstructure
of the specimen material was represented by an explicit discretization of the polycrystalline grain
structure in the gauge section of the specimen. Outside of this region, a much coarser discretization
was employed to capture only the geometry of the specimen. Local heterogeneity in the material
was not reflected in the simulation. The microstructural subdomain was linked to two specimen-
scale subdomains via the Schwarz alternating method of concurrent multiscale coupling. It was
demonstrated that this method could be used to investigate the role of microstructure on the het-
erogeneous deformation of the specimen in a computationally tractable manner.

Beyond this demonstration, the simulation framework developed in this study will be used to
analyze localization during necking of the tensile specimen and the impact of the microstructure
on this process. A number of key developments have been identified during the present study that
are required to enable this exploration. First, the discretization of the microstructural domain must
be evolved to conform to the grain boundaries in the microstructure if stress concentrations are to
be modeled properly. Second, the role of the material model in the specimen-scale subdomains
should be examined in order to determine a more commensurate representation of the aggregate
microstructural response with respect to anisotropy and rate dependence. Lastly, the impact of the
Schwarz coupling of different subdomains with disparate material models must be evaluated.

Modular approach to crystal plasticity

1. Additional physics. Although we did make progress in many aspects of the flow of single
crystals, we did not make fundamental contributions in deformation twinning. We believe
that twinning is an important mechanism in the localization of the deformation for hydrogen-
charged stainless steel alloys and tantalum alloys exposed to elevated rates of loading. To
better understand the importance of twinning on the deformation of stainless steel alloys, we
have proposed a set of experiments probing single crystals noted in Section 7.2.

2. Additional numerics. These remarks pertain to the numerical infrastructure that we devel-
oped for the crystal plasticity model. For discussion about the numerical techniques em-
ployed for the solution of the global systems of equations, refer to the Schwarz alternating
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method used for concurrent multiscale. The use of MiniSolver and MiniTensor for the im-
plementation of the crystal plasticity model provided many features, such as support for
manycore architectures, and led to significant reduction in the complexity of the implemen-
tation. Also, early in the project there was evidence that the use of MiniSolver provided a
decrease in computation time of up to 30%. The crystal plasticity model is significantly com-
plex, and challenges any numerical solution scheme. Although MiniSolver became the work
horse for crystal plasticity calculations, it is clear that some new features would improve both
its robustness and efficiency. Among these are: improving the numerical efficiency of con-
strained optimization algorithms, use of sub-cycling, and adaptive use of solution schemes
(e.g. starting with one scheme and switching to another later on). The crystal plasticity
model was the motivation of many features introduced to MiniSolver, and it tested the limits
of its design.

3. Crystal plasticity in Sierra/SolidMechanics. As described in Section 4.4, the crystal plastic-
ity constitutive model has been ported to LAME for use in Sierra/SolidMechanics. This is a
crucial element in advancing the technology developed in this project from the research and
development phase to the production phase, where it can be used directly for the fulfillment
of Sandia’s nuclear weapons mission.

Successful deployment of the crystal plasticity model to the Sandia analyst community re-
lies on 1) the ability to support analysts in the application of the material model to mission-
relevant engineering simulations, and 2) the ability to perform ongoing software maintenance
on the material model source code. It is clear, based on preliminary testing, that successful
use of the crystal plasticity model in complex engineering simulations will require close col-
laboration between the model developers and analysts using the Sierra code suite. Collabo-
ration is critical because exercising the material model in this context reveals shortcomings
in the implementation which must be addressed by a model developer, for example in the
treatment of numerical difficulties that can arise under conditions of large deformation and
high strain rates. Continued involvement of the model development team is also necessary in
the context of standard, ongoing software maintenance. Sandia engineering codes are sub-
ject to a process of continual improvement that can necessitate changes to material model
code. This is true within the Sierra codes themselves, and also within the LCM code, where
changes to the crystal plasticity model may need to be ported to the LAME implementation.

Several activities planned for FY18 are congruent with the present LDRD and provide a
means for advancing the crystal plasticity model and expanding its impact. The multiscale
technology demonstrator being developed under ASC/ATDM serves as an early adopter for
next-generation software tools, e.g., the DARMA asynchronous many-task scheduler and
the Kokkos library for performance portability. A FE2 multiscale capability was added to
the technology demonstrator in FY17 and provides a natural application space for the crystal
plasticity model. In this context, the crystal plasticity model can be used within a mesoscale
representative volume element, capturing the effects of grain-scale mechanisms and inform-
ing the overall macroscale response. A second FY18 activity in which the crystal plasticity
model is highly relevant is the ASC/P&EM project on adapting LAME material models for
emerging, next-generation computing hardware. Significant performance gains for the crys-
tal plasticity model are possible under this project, which could greatly improve usability in
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engineering simulations.

4. Manycore architectures. There was significant progress in the introduction of manycore
parallelism for the crystal plasticity model by means of the Kokkos framework. This is
not a trivial task, and despite technical and resource availability challenges, we succeeded.
But there is still much work to do. Specifically, we only tested OpenMP parallelism. Kokkos
supports other types of devices that implement different modes of parallelism, such as CUDA
or Intel Phi. We did not have access to the necessary infrastructure to test our implementation
in these platforms, however. In addition, the finite element and solver infrastructure needs to
be parallelized to realize full speedups. That task, however, is well beyond the scope of this
work.

5. Robustness suite. Although progress was made in the conception and execution of a robust-
ness suite, we need cluster builds to be both diverse and stable to support a large suite of
performance tests. The Robustness suite should have sufficient breadth to provide a technol-
ogy pull for better methods. In addition to providing feedback on the applicability of new
algorithms to a suite of increasing complexity, we also seek to provide automation in the
generation, submission, simulation, and reduction of ensembles of microstructures.

Conformal microstructures

We have made significant progress in moving towards conformal approaches and away from vox-
elated representations during the last two years of this project. We have now able to examine both
a hexahedral workflow and tetrahedral workflow for microstructure. Throughout this LDRD, we
have deployed resources to enable the tetrahedral workflow because we believe there are inherent
advantages to tetrahedral workflow. We can support 3D size fields with tetrahedral elements. We
also have a surface representation that is independent of the chosen discretization which permits
mesh convergence studies to assess both near-field and far-field information.

There are, however, a few issues that merit increased scrutiny and new methods. With regard
to the phase field approach, we currently solve a 4th-order partial differential equation, voxelate
the continuous solution, and then reconstruct the voxelated approximation. Given the limitation
of voxelated input, we might propose to mitigate error through recursive bisection. Figure 33 at-
tempts to illustrate this simple concept in 2D. More recent work towards the end of FY17 in Sculpt
has also investigated a space-filling tetrahedral overlay rather than a hexahedral overlay. While
this may indeed provide additional opportunities for mitigating error, we need targeted efforts to
accurately map PF simulations for geometric reconstruction. We need to take advantage of the
smooth isosurfaces (0.5) inherent in the phase field approach.

Another issue inherent in grain-growth simulations stems from boundary conditions. Because
the domain sizes are relatively small, periodic boundary conditions are typically employed for
grain growth. Albeit logical, there are ramifications for analysis efforts. Triple junctions and high
aspect ratio structures may be located adjacent to one boundary while the majority of the structure
is connected to the opposite surface. The small features that result from this process will drive
down the element size needed for resolution. Figure 34 attempts to illustrate these matters for a
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Figure 33. Schematic showing different levels of adaptive mesh
refinement via recursive bisection. The resulting octree data struc-
ture provides increased accuracy to resolve grain boundary curva-
ture and triple junctions.

71



particular microstructure. Please note that the highly discretized regions are driven by these fine
features. Some of the finest feature are already being altered by defeaturing. More study is needed.
As noted in boundary conditions applied in Sections 2 and 3, periodic boundary conditions may
not always be appropriate. We should consider additional boundary conditions in our approach to
grain growth. From a practical standpoint, we will always section our experimental observations of
microstructure. Given a sufficient number of grains, our representations will contain these features.
Thoughtful study is required to focus on mechanisms and the relevance to these particular features.

Figure 34. Cases of substantial refinement that may stem from
periodic boundary conditions in the grain growth simulations.
More study is needed to understand the relevance of these features.
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Structure-property linkages

An academic alliance with Surya Kalidindi’s group at Georgia Institute of Technology enabled the
extension of MKS framework to investigate two-phase microstructures to damage evolution. This
framework was used to capture the relationship between the many features of a microstructure
and its sensitivity to damage initiation. The next step would be to incorporate more detailed mi-
crostructural features, such as crystal orientations of polycrystals and their deformation behaviors.
This would require a large number of simulations for training data. Furthermore, various damage
initiation and evolution criteria should be tested and validated with experiments.

In addition, we will continue to collaborate with Surya Kalidindi to develop a database-driven
crystal plasticity framework. This method employs a spectral (Fourier) representation of the re-
sponses of an efficiently selected number of crystal plasticity simulations to develop a database that
allows for the rapid calculation of the crystal plasticity constitutive equations. This new technique
calculates the results of crystal plasticity simulations 100 times faster.

7.2 A path forward through teaming

The work initiated in this project will move forward next year on many fronts. We will pursue
aspects of this problem in Laboratory Directed Research & Development (LDRD), Physics & En-
gineering Models (P&EM), Advanced Technology Deployment & Mitigation (ATDM), Campaign
2 (C2), Modeling Materials Assurance (MMA), Weapons Systems Engineering Assessment Tech-
nology (WSEAT), and University partnerships. FY18 projects include

1. Uncertainty quantification of microstructural material variability (Jones, Alleman, ES LDRD)

2. Dynamic strain aging in additive manufactured alloys (Antoun, Alleman, NW LDRD)

3. Upscaling mesoscale mechanisms/uncertainty (Foulk, Alleman, Emery, P&EM)

4. Schwarz multiscale coupling (Mota, Emery, P&EM)

5. Microstructural mechanisms of H embrittlement (Foulk, Alleman, P&EM)

6. Constitutive models for next generation architectures (Littlewood, P&EM)

7. Using DARMA for FE2 asynchronous demonstrator (Littlewood, ATDM)

8. Materials Margin Assurance (MMA), ARMS springs (Madison, Lim, P&EM)

9. High rate deformation of tantalum (Lane, Lim, C2)

10. Modeling two-phase Ni-based superalloys (Lim, Cambridge)

11. Continue to probe structure-property relations for localization (Lim, GT)
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Given that we are now employing tools to solve classes of problems, we must be very deliberate
in teaming to develop fundamental capabilities for the community. Moreover, additional efforts
are needed to support both the aforementioned projects and our mission objectives. We propose to
fund following projects

1. Influence of hydrogen isotopes on mechanical and microstructural evolution of discrete mi-
crostructural elements at dislocation length scales (San Marchi, WSEAT)

2. Mesoscale phase field models of microstructure formation and evolution using SPPARKS
(Abdeljawad)

to provide fundamental experiments of single crystals and new methods for generating relevant
computational microstructures. Mesoscale modeling is built on the flow of single crystals. We
cannot proclaim modeling and simulation to be relevant for our understanding without conducting
experiments to validate the “building blocks” of our approach. In that vein, we cannot assert that
microstructure is the key to understanding mechanisms if we are not going to invest in computa-
tional microstructure. None of the 11 aforementioned projects in FY18 has a major component
in generating relevant microstructures for computation. Again, we must be deliberate in our ap-
proaches and share those findings with the community.

It is our hope that we can continue to contribute in the areas of microscale physics, strong mul-
tiphysics coupling, concurrent multiscale coupling, and a flexible development environment. As
shown in Figure 35, we believe that these fundamental contributions enable sustained research ef-
forts, spawn emerging efforts, and provide an opportunity for rapid discovery. The totality of these
efforts implemented in research and production environments will support of internal initiatives
(Engineering of Materials Reliability Research Challenge), enable stockpile stewardship (National
Nuclear Security Administration), and promote collaboration through national (Exascale) and in-
ternational (Integrated Computational Materials Engineering) initiatives.
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Figure 35. Components of a technical basis that enable research
efforts, mature research environments, support production imple-
mentation, and ultimately serve our mission and foster collabora-
tion with national/international communities.
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8 Conclusion

Through this work, we attempted to push forward in key areas to connect microscale physics to
structural performance.

1. We were successful in simulating the two-way coupling of a heterogeneous polycrystal em-
ploying crystal plasticity to a homogenous bar employing J2 plasticity using the Schwarz
Alternating method. Studies focused on incipient localization and the role of boundary con-
ditions applied to microstructure.

(a) Performed homogenization for the J2 overlap region

(b) Contrasted multiple variations of the Schwarz Alternating method in LCM

(c) Recovered monotonic convergence with the classic Schwarz Alternating method

(d) Focused on verification, test-driven development, and robustness

2. We have developed a modular approach to crystal plasticity in which one can employ the
desired physics and the requisite numerics for implicit solution.

(a) Implemented modular physics for the flow rule and hardening laws

(b) Enabled modular numerics through the development of MiniSolver and MiniTensor

(c) Focused on verification, test-driven development, and robustness

3. Detailed studies quantified the complexity of the crystal physics. Novel diagnostics were
developed to illustrate slip activity on all 12 slip systems and the impact on the residual and
convergence rate during the iterative process.

4. Verification problems were developed to idealize fully-populated slip systems. The quad-slip
case provides an opportunity for testing major components of the algorithmic update.

5. We accept that developing in research environment is not sufficient for widespread adoption.
In an effort to support the production environment, we ported the crystal plasticity model to
Sierra/SM multiple times during our development process.

6. We successfully illustrated the scalability of the crystal plasticity model for new architec-
tures. Specifically, we achieved a speedup of ∼20 with 32 cores using the Kokkos OpenMP
parallel mode.

7. In reflection of our values, we developed a robustness suite to exercise our algorithms on
problems of increasing complexity. We believe that such a suite is necessary to quantify and
monitor the performance of our algorithms.

8. Building on our success with generating conformal grain boundaries for a hexahedral work-
flow, we extended the generation of conformal boundaries to a tetrahedral workflow.

(a) Resolving the grain-grain interactions that facilitate strain localization
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(b) Demonstrated that composite tetrahedral elements provide resolution and smoothness

(c) Simulated large deformations (stretches ∼ 9) with implicit time integration

9. In collaboration with Professor Kalidindi at Georgia Tech, we applied Materials Knowledge
Systems to synthetic two-phase microstructures. We linked Principal Component Analy-
sis (PCA) of the microstuctures with Generalized Extreme Value Distributions (GEVD) of
void evolution through multivariate polynomial regression to link microstructural features to
material performance.

10. Lessons learned and future work were illustrated for the requisite components which include:
concurrent multiscale, crystal plasticity, conformal microstructures, and structure-property
linkages. A credible path forward for fundamental work requires teaming.
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A Need for concurrent, two-way coupling

Often we are asked to justify two-way coupling. If one is passionate about localization, we might
wonder why one must justify that the near-field unloads the far-field. This is, in fact, a definition
of localization. Experiments do just that. Whether the process be structural softening or material
softening, two-way coupling is needed to ensure that the far-field and the near-field are in “bal-
ance.” Pontification aside, we wonder if one can construct a thought experiment that illustrates
the need for two-way coupling. We envision the mechanical analog noted in Figure A.1 where the
force in the coarse spring for one-way coupling P 1

c is

P 1
c = Pmax exp(1)

(
∆0

L

)
(63)

while the force for two-way coupling P 2
c is

P 2
c = Pmax exp(1)

(
∆c

Lc

)
. (64)

The force in the fine scale spring is always

Pf = Pmax exp(1)

(
∆f

Lf

)
exp

(
− ∆f

Lf

)
(65)

where the peak load at the fine scale is Pmax is attained when ∆f = Lf . To be clear, we have
intentionally added softening (read localization) into the fine scale through the exponential decay
of the fine scale constitutive relation. If we only consider one-way coupling, the analytical solution
for the displacement field in the coarse spring is

∆1(x) =

(
∆0

L

)
x (66)

and the corresponding displacement field interpolated to the fine scale spring is

∆1
f =

(
∆0

L

)
Lf . (67)

Although idealized, this what the community terms sub-modeling. To emphasize the fact that one-
way coupling is just a transfer of the coarse scale to the fine scale, we elect to employ the term
“one-way transfer.” We solve the the far-field and interpolate the solution of the primary variable
onto the near-field. Given the solution of the fine scale, we can calculate the force in the fine scale
spring that results from one-way transfer, P 1

f , to be

P 2
f = Pmax exp(1)

(
∆0

L

)
exp

(
− ∆0

L

)
(68)

and note that the coarse-scale stiffness and fine-scale stiffness are equivalent at ∆0 = 0. Neat. To
be clear, the end displacement of the fine scale ∆f does not depend on the fine-scale behavior. That
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one-way
transfer

two-way
coupling

fine (near-field) coarse (far-field)

Figure A.1. Thought experiment to investigate the ramifications
of one-way and two-way coupling. The figure is to scale with
L = 5Lf .

fine (near-field)

coarse (far-field)

one-way
transfer

not 
accurate

Figure A.2. In one-way transfer, the coarse scale and the fine
scale are not in equilibrium, Pc 6= Pf .
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displacement is only governed by the coarse-scale solution. Consequently, there is no guarantee
that the bodies will be in equilibrium, P 1

f = P 1
c . In fact, examining Equation 63 and Equation 68,

one finds that the bodies are never in equilibrium for finite ∆0. This property of one-way transfer
is illustrated in Figure A.2. In contrast, two-way coupling ensures that the both the coarse scale
and the fine scale are in equilibrium. Both scales are intimately connected through a degree of
freedom, ∆f . To solve for equilibrium, we define a residual R as the difference between P 2

c and
P 2
f knowing that Lc = 4Lf

R = Pmax exp(1)

[
∆0 −∆f

4Lf
− ∆f

Lf
exp

(
− ∆f

Lf

)]
. (69)

Employing Newton’s method to solve the nonlinear equation R = 0 for each ∆0, we contrast
the two-way coupling solution to the one-way transfer in Figure A.3. For two-way coupling, we

two-way
coupling

one-way
transfer

not conservative

Figure A.3. Two-way coupling localizes the displacement field
in the fine scale. We remark that not only is one-way transfer in-
accurate but the methodology is not conservative.

are plotting the load-displacement curve for the entire structure. For the one-way transfer, we are
plotting the load-displacement curve for the fine scale. As expected, two-way coupling localizes
and exhibits failure at lower values of ∆0. The coarse scale unloads to drive the localization of the
displacement field at the fine scale. In contrast, one-way transfer does not localize the solution.
The coarse scale load-displacement curve in Figure A.3 mirrors Figure A.2.

The fact that the fine-scale still retains substantial load-bearing capacity for one-way transfer
illustrates that the methodology is not conservative. Cleary this example is idealized. For some
boundary-value problems, differences between a one-way transfer and two-way coupling may be
minimal. Not all boundary-value problems exhibit localization. Those differences, however, can
only be quantified if one can employ two-way coupling.
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